Optical characteristics of GaAsP/GaInP quantum well grown by metal-organic chemical vapor deposition

被引:0
作者
Yuan, Huibo [1 ]
Li, Lin [1 ]
Qiao, Zhongliang [1 ]
Kong, Lingyi [2 ]
Gu, Lei [1 ]
Liu, Yang [1 ]
Dai, Yin [1 ]
Li, Te [1 ]
Zhang, Jing [1 ]
Qu, Yi [1 ]
机构
[1] National Key Lab of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun
[2] AIXTRON China Limited
来源
Zhongguo Jiguang/Chinese Journal of Lasers | 2014年 / 41卷 / 05期
关键词
GaAsP/GaInP quantum well; Metal organic chemical vapor deposition; Offcut substrate; Photo luminescence intensity;
D O I
10.3788/CJL201441.0506002
中图分类号
学科分类号
摘要
GaAsP/GaInP quantum wells are grown on different misoriented substrates by low pressure_metal-organic chemical vapor deposition (LP_MOCVD) technique. The samples are characterized via photo luminescence (PL) spectroscopy at room temperature. The effect of the growing temperature of barrier layer, V/III ratio of quantum well layer and offcut substrate to emitting wavelength, PL intensity and full-width at half-maximum (FWHM) is discussed. Samples with lower barrier growing temperature shows higher PL intensity. The PL intensity will increase when the V/III ratio of quantum well layer decreases, and the PL peak exhibits a red shift at the same time. Samples grown on substrate (100) oriented 15° off towards <111> exhibit the highest PL intensity and narrowest FWHM.
引用
收藏
相关论文
共 12 条
[1]  
Kawaguchi M., Miyamoto T., Kawakami S., Et al., Photoluminescence and lasing characteristics of 1.3 μm GaInNAs/GaAsP/GaAs Strain-compensated quantum wells, IEEE International Symposium on Compound Semiconductors, pp. 72-73, (2003)
[2]  
Sagawa M., Toyonaka T., Hiramoto K., Et al., High-power highly-reliable operation of 0.98-μm InGaAs-InGaP strain-compensated single-quantum-well lasers with tensile-strained InGaAsP barriers, IEEE J Select Topics Quantum Electron, 1, 2, pp. 189-195, (1995)
[3]  
Asano H., Wada M., Fukunaga T., Et al., Temperature-in-sensitive operation of real index guided 1.06 μm InGaAs/GaAsP strain-compensated single-quantum-well laser diodes, Appl Phys Lett, 74, 21, pp. 3090-3092, (1999)
[4]  
Tansu N., Mawst L.J., Et al., High-performance strain-compensated InGaAs-GaAsP-GaAs (λ=1.17 μm) quantum-well diode lasers, IEEE Photonics Technology Letters, 13, 3, pp. 179-181, (2001)
[5]  
Zhang L., Ning Y., Zeng Y., Et al., Design of active region for watt-level VCSEL at 1060 nm, Chinese Journal of Luminescence, 33, 7, pp. 774-779, (2012)
[6]  
Tatsuoka Y., Kamimoto H., Kitano Y., Et al., GaAs/GaAs<sub>0.8</sub>P<sub>0.2</sub> quantum wells grown on (n11) A GaAs substrates by molecular beam epitaxy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 17, 3, pp. 1155-1157, (1999)
[7]  
Zhong L., Ma X., Wang S., Et al., 808 nm GaAsP/GaInP laser diode arrays grown by MOCVD using AsH3 and TBP, International Nano-Optoelectronics Workshop, pp. 237-238, (2008)
[8]  
Ohba Y., Ishikawa M., Sugawara H., Et al., Growth of high-quality inGaAIP epilayers by MOCVD using methyl metalorganics and their application to visible semiconductors lasers, J Crystal Growth, 77, 1-3, pp. 374-379, (1986)
[9]  
Dong J., Li X., Sun D., Et al., Ordered structure in Ga<sub>0.5</sub>In<sub>0.5</sub>P grown by MOCVD and GSMBE, Chinese Journal of Semiconductirs, 17, 9, pp. 642-645, (1996)
[10]  
Fu Z., Influnce of V/III ratio on distribution of aluminum in the Al<sub>x</sub>Ga<sub>1-x</sub>As epitaxy layers by MOCVD, Chinese Journal of Luminescence, 15, 1, pp. 44-49, (1994)