Research on Low Contrast Surface Defect Detection Method Based on Improved YOLOv7

被引:0
作者
Chen, Shuang [1 ]
Li, Weipeng [1 ,2 ]
Yan, Xiang [2 ,3 ]
Liu, Wen [2 ]
Chen, Chao [2 ]
Liao, Jinwei [1 ]
Chen, Xu [2 ]
Shu, Jianqi [2 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Mech & Elect Engn, Ganzhou 341000, Peoples R China
[2] Zhejiang Wanli Univ, Sch Informat & Intelligent Engn, Ningbo 315100, Peoples R China
[3] Tianjin Univ, Sch Mech Engn, Tianjin 300354, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Defect detection; Feature extraction; Accuracy; Lighting; Testing; Training; Focusing; Data augmentation; Attention mechanism; data augmentation; low contract defects; vision inspection; YOLOv7;
D O I
10.1109/ACCESS.2024.3429283
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming at the difficulty of defect detection caused by the low contrast between defects such as scratches, deformation and foreign bodies on the surface of parts and the background, and the defects are greatly affected by the surrounding light, an accurate recognition method of low contrast defects based on improved YOLOv7 is proposed. A fusion Mosaic and MixUP online data enhancement method is proposed to expand the training sample data. The GAM attention module is added to the backbone network to enhance the feature extraction ability of low contrast defects, and SIoU loss function is used to focus on the accuracy of the model to accelerate the convergence speed of the model, and the fast suspected defect location is realized based on multi-camera. After focusing on the suspected defect position, the defect features are enhanced and accurately identified by rotating the 6RSS mechanism. Experiments show that the SIoU-YOLOv7-GAM algorithm shows better performance than the original YOLOv7 algorithm, and the average accuracy and recall rate are increased by 2.92 % and 5.02 %, respectively. The proposed multi-camera focusing detection method has a high recognition accuracy for low-contrast defects on the surface, and can eliminate the problem of defect error recognition to achieve accurate detection of low-contrast defects on the surface of parts.
引用
收藏
页码:179997 / 180008
页数:12
相关论文
共 50 条
  • [31] Improved YOLOv7 Based on Reparameterization and Attention Mechanism for Continuous Casting Slab Detection
    Liu, Le
    Huang, Feng
    Gu, Linglong
    Fang, Yiming
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [32] Power Insulator Defect Detection Method Based on Enhanced YOLOV7 for Aerial Inspection
    Hu, Jun
    Wan, Wenwei
    Qiao, Peng
    Zhou, Yongqi
    Ouyang, Aiguo
    ELECTRONICS, 2025, 14 (03):
  • [33] MoL-YOLOv7: Streamlining Industrial Defect Detection With an Optimized YOLOv7 Approach
    Raj, G. Deepti
    Prabadevi, B.
    IEEE ACCESS, 2024, 12 : 117090 - 117101
  • [34] Surface Defect Detection of Industrial Components Based on Improved YOLOv5s
    Liu, Li
    Feng, Xuefeng
    Li, Feng
    Xian, Qinglong
    Chen, Zhendong
    Jia, Zhenhong
    IEEE SENSORS JOURNAL, 2024, 24 (15) : 23940 - 23950
  • [35] Mask wearing detection algorithm based on improved YOLOv7
    Luo, Fang
    Zhang, Yin
    Xu, Lunhui
    Zhang, Zhiliang
    Li, Ming
    Zhang, Weixiong
    MEASUREMENT & CONTROL, 2024, 57 (06) : 751 - 762
  • [36] Pedestrian Fall Detection Algorithm Based on Improved YOLOv7
    Wang, Fei
    Zhang, Yunchu
    Zhang, Xinyi
    Liu, Yiming
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 437 - 448
  • [37] FOREST FIRE DETECTION BASED ON IMPROVED YOLOV7 MODELING
    Yang, Q.
    Zhang, T.
    Tong, X.
    Hu, L. H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2024, 22 (04): : 3123 - 3136
  • [38] Marine Organism Detection Based on Double Domains Augmentation and an Improved YOLOv7
    Zhang, Jian
    Yan, Xinyue
    Zhou, Kexin
    Zhao, Bing
    Zhang, Yonghui
    Jiang, Hong
    Chen, Hongda
    Zhang, Jinshuai
    IEEE ACCESS, 2023, 11 : 68836 - 68852
  • [39] MCA-YOLOv7: An Improved UAV Target Detection Algorithm Based on YOLOv7
    Qin, Zhiyong
    Chen, Dike
    Wang, Hongyuan
    IEEE ACCESS, 2024, 12 : 42642 - 42650
  • [40] MGDE-YOLO: An Improved Lightweight Algorithm for Personnel Departure Detection Based on YOLOv7
    Xu, Haiqiang
    Xue, Renzheng
    Zhang, Zifeng
    Hua, Shijie
    IEEE ACCESS, 2024, 12 : 150592 - 150603