Research on Low Contrast Surface Defect Detection Method Based on Improved YOLOv7

被引:0
作者
Chen, Shuang [1 ]
Li, Weipeng [1 ,2 ]
Yan, Xiang [2 ,3 ]
Liu, Wen [2 ]
Chen, Chao [2 ]
Liao, Jinwei [1 ]
Chen, Xu [2 ]
Shu, Jianqi [2 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Mech & Elect Engn, Ganzhou 341000, Peoples R China
[2] Zhejiang Wanli Univ, Sch Informat & Intelligent Engn, Ningbo 315100, Peoples R China
[3] Tianjin Univ, Sch Mech Engn, Tianjin 300354, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Defect detection; Feature extraction; Accuracy; Lighting; Testing; Training; Focusing; Data augmentation; Attention mechanism; data augmentation; low contract defects; vision inspection; YOLOv7;
D O I
10.1109/ACCESS.2024.3429283
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming at the difficulty of defect detection caused by the low contrast between defects such as scratches, deformation and foreign bodies on the surface of parts and the background, and the defects are greatly affected by the surrounding light, an accurate recognition method of low contrast defects based on improved YOLOv7 is proposed. A fusion Mosaic and MixUP online data enhancement method is proposed to expand the training sample data. The GAM attention module is added to the backbone network to enhance the feature extraction ability of low contrast defects, and SIoU loss function is used to focus on the accuracy of the model to accelerate the convergence speed of the model, and the fast suspected defect location is realized based on multi-camera. After focusing on the suspected defect position, the defect features are enhanced and accurately identified by rotating the 6RSS mechanism. Experiments show that the SIoU-YOLOv7-GAM algorithm shows better performance than the original YOLOv7 algorithm, and the average accuracy and recall rate are increased by 2.92 % and 5.02 %, respectively. The proposed multi-camera focusing detection method has a high recognition accuracy for low-contrast defects on the surface, and can eliminate the problem of defect error recognition to achieve accurate detection of low-contrast defects on the surface of parts.
引用
收藏
页码:179997 / 180008
页数:12
相关论文
共 50 条
  • [21] Research on Insulator Defect Detection Based on Improved YOLOv7 and Multi-UAV Cooperative System
    Chang, Rong
    Zhou, Shuai
    Zhang, Yi
    Zhang, Nanchuan
    Zhou, Chengjiang
    Li, Mengzhen
    COATINGS, 2023, 13 (05)
  • [22] Research on Improved YOLOv7 for Traffic Obstacle Detection
    Yang, Yifan
    Cui, Song
    Xiang, Xuan
    Bai, Yuxing
    Zang, Liguo
    Ding, Hongshan
    WORLD ELECTRIC VEHICLE JOURNAL, 2025, 16 (01):
  • [23] An efficient method of pavement distress detection based on improved YOLOv7
    Yi, Cancan
    Liu, Jun
    Huang, Tao
    Xiao, Han
    Guan, Hui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [24] An Improved YOLOv7-Tiny-Based Algorithm for Wafer Surface Defect Detection
    Li, Mengyun
    Wang, Xueying
    Zhang, Hongtao
    Hu, Xiaofeng
    IEEE ACCESS, 2025, 13 : 10724 - 10734
  • [25] CCG-YOLOv7: A Wood Defect Detection Model for Small Targets Using Improved YOLOv7
    Cui, Wenqi
    Li, Zhenye
    Duanmu, Anning
    Xue, Sheng
    Guo, Yiren
    Ni, Chao
    Zhu, Tingting
    Zhang, Yajun
    IEEE ACCESS, 2024, 12 : 10575 - 10585
  • [26] A New Lunar Dome Detection Method Based on Improved YOLOv7
    Tian, Yunxiang
    Tian, Xiaolin
    SENSORS, 2023, 23 (19)
  • [27] Steel Surface Defect Detection Method Based on Improved YOLOv9 Network
    Zou, Jialin
    Wang, Hongcheng
    IEEE ACCESS, 2024, 12 : 124160 - 124170
  • [28] Road Pothole Detection Based on Improved YOLOv7
    Ma, Ronggui
    Wang, Jianyu
    Huang, Xunyan
    Zhao, Lulu
    Xu, Meiyu
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 190 - 195
  • [29] Improved YOLOv7-based steel surface defect detection algorithm
    Xie, Yinghong
    Yin, Biao
    Han, Xiaowei
    Hao, Yan
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 346 - 368
  • [30] Research on Underwater Small Target Detection Algorithm Based on Improved YOLOv7
    Yi, Weiguo
    Wang, Bo
    IEEE ACCESS, 2023, 11 : 66818 - 66827