MPS2L: Mutual Prediction Self-Supervised Learning for Remote Sensing Image Change Detection

被引:1
|
作者
Wang, Qingwang [1 ,2 ]
Qiu, Yujie [1 ,2 ]
Jin, Pengcheng [1 ,2 ]
Shen, Tao [1 ,2 ]
Gu, Yanfeng [3 ,4 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China
[2] Kunming Univ Sci & Technol, Yunnan Key Lab Comp Technol Applicat, Kunming 650500, Peoples R China
[3] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[4] Heilongjiang Prov Key Lab Space Air Ground Integra, Harbin 150001, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Transformers; Remote sensing; Training; Decoding; Image reconstruction; Predictive models; Attention mechanism; masked image modeling (MIM); remote sensing (RS) image change detection (CD); self-supervised learning; BUILDING CHANGE DETECTION; TIME-SERIES; CLASSIFICATION; TRANSFORMERS; DATASET; NETWORK;
D O I
10.1109/TGRS.2024.3468008
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this article, we propose a novel mutual prediction self-supervised learning (MPS2L) method for remote sensing (RS) image change detection (CD). Compared with the previous self-supervised CD methods based on contrastive learning (CL), MPS2L employing a pixel-level training strategy based on masked image modeling (MIM) can effectively train the model to interpret the local scene of RS images. Utilizing global and local scenes and temporal change features extracted from masked bitemporal images to achieve cross-temporal mutual prediction makes the model have the ability to understand the overall observation scene and capture the change information. The training of the two abilities is carried out simultaneously, avoiding the problem of multiobjective conflict or mutual inhibition. To better focus on the changing regions in RS scenes, we further introduce a change feature interaction module (CFIM), comprising spatial and channel feature interaction. The channel interaction module (CIM) can facilitate the cross-temporal transmission of global scene information by channel attention, and the spatial interaction module (SIM) can promote the network to capture information on changing regions by spatial attention. The experimental results on three benchmark RS CD datasets demonstrate the effectiveness and priority of our proposed MPS2L compared to some existing state-of-the-art (SOTA) methods. The source code of the proposed MPS2L will be made available publicly at https://github.com/KustTeamWQW/MPS2L.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Multiscale Self-Supervised SAR Image Change Detection Based on Wavelet Transform
    Zong, He
    Zhang, Erlei
    Li, Xinyu
    Zhang, Hongming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [42] Remote Sensing Image Scene Classification via Self-Supervised Learning and Knowledge Distillation
    Zhao, Yibo
    Liu, Jianjun
    Yang, Jinlong
    Wu, Zebin
    REMOTE SENSING, 2022, 14 (19)
  • [43] Open Self-Supervised Features for Remote-Sensing Image Scene Classification Using Very Few Samples
    Qiu, Chunping
    Yu, Anzhu
    Yi, Xiaodong
    Guan, Naiyang
    Shi, Dianxi
    Tong, Xiaochong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [44] Research on Semantic Segmentation Method of Remote Sensing Image Based on Self-supervised Learning
    Zhang, Wenbo
    Wang, Achuan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 500 - 508
  • [45] Remote Sensing Image Scene Classification With Self-Supervised Paradigm Under Limited Labeled Samples
    Tao, Chao
    Qi, Ji
    Lu, Weipeng
    Wang, Hao
    Li, Haifeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [46] STLNet: Symmetric Transformer Learning Network for Remote Sensing Image Change Detection
    Mei, Liye
    Huang, Andong
    Ye, Zhaoyi
    Yalikun, Yaxiaer
    Wang, Ying
    Xu, Chuan
    Yang, Wei
    Li, Xinghua
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 2655 - 2667
  • [47] Self-supervised audiovisual representation learning for remote sensing data
    Heidler, Konrad
    Mou, Lichao
    Hu, Di
    Jin, Pu
    Li, Guangyao
    Gan, Chuang
    Wen, Ji-Rong
    Zhu, Xiao Xiang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 116
  • [48] Self-supervised remote sensing image change detection based on high frequency feature and gate attention-guided optimization unit
    Shi, Aiye
    Wang, Sen
    Wang, Xin
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (02)
  • [49] IMAGE ENHANCED ROTATION PREDICTION FOR SELF-SUPERVISED LEARNING
    Yamaguchi, Shinya
    Kanai, Sekitoshi
    Shioda, Tetsuya
    Takeda, Shoichiro
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 489 - 493