Impact of a laser magnetic field on optical trapping

被引:0
作者
Kabi, Sareh [1 ]
Alinezhad, Hossein Gorjizadeh [1 ]
Langari, Abdollah [1 ]
Reihani, Nader S. [1 ]
机构
[1] Sharif Univ Technol, Dept Phys, Tehran 1458889694, Iran
来源
OPTICA | 2024年 / 11卷 / 09期
关键词
FORCE; MANIPULATION; TWEEZERS; POWER; PARTICLES; CELLS;
D O I
10.1364/OPTICA.528850
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical tweezers have proved to be indispensable tools for micro-manipulation. However, the application of large forces using optical tweezers requires high laser intensity, which could be destructive in the case of biological samples. By embedding magnetite nanoparticles in a polystyrene matrix, we get a trap stiffness similar to 15 times higher than that of similar plain beads as a result of the response to both the electric and magnetic fields of the laser beam. Our approach allows for measurement of the magnetic properties of materials in the range of the laser frequency. Our theoretical calculations predict that incorporating the effective complex permeability and permittivity for a microbead could generate significantly large optical forces, up to micro-Newtons. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:1295 / 1302
页数:8
相关论文
共 50 条
[11]   Single-beam three-dimensional optical trapping at extremely low insertion angles via optical fiber optimization [J].
Ross, Steven ;
Murphy, Mark F. ;
Lilley, Francis ;
Lalor, Michael J. ;
Burton, David R. .
OPTICAL ENGINEERING, 2014, 53 (08)
[12]   Numerical study on trapping and guiding of nanoparticles in a flow using scattering field of laser light [J].
Yokoi, Naomichi ;
Aizu, Yoshihisa .
OPTICAL REVIEW, 2018, 25 (03) :410-421
[13]   Optical Trapping of Single Nanostructures in a Weakly Focused Beam. Application to Magnetic Nanoparticles [J].
Rodriguez-Rodriguez, Hector ;
de Lorenzo, Sara ;
de la Cueva, Leonor ;
Salas, Gorka ;
Ricardo Arias-Gonzalez, J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (31) :18094-18101
[14]   Optical trapping mechanisms based on optothermal Marangoni effect [J].
Miniewicz, Andrzej ;
Bartkiewicz, Stanislaw ;
Karpinski, Pawel .
OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION XVI, 2019, 11083
[15]   Plasmon assisted optical trapping: Fundamentals and biomedical applications [J].
Serafetinides, Alexandros A. ;
Makropoulou, Mersini ;
Tsigaridas, Georgios N. ;
Gousetis, Anastasios .
18TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2015, 9447
[16]   A semi-analytical model of a near-field optical trapping potential well [J].
Zaman, Mohammad Asif ;
Padhy, Punnag ;
Hesselink, Lambertus .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (16)
[17]   Optical Trapping and Manipulation Using Optical Fibers [J].
Lou, Yuanhao ;
Wu, Dan ;
Pang, Yuanjie .
ADVANCED FIBER MATERIALS, 2019, 1 (02) :83-100
[18]   Intracavity Optical Trapping with Ytterbium Doped Fiber Ring Laser [J].
Sayed, Rania ;
Kalantarifard, Fatemeh ;
Elahi, Parviz ;
Ilday, F. Omer ;
Volpe, Giovanni ;
Marago, Onofrio M. .
OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION X, 2013, 8810
[19]   Optical Funneling and Trapping of Gold Colloids in Convergent Laser Beams [J].
Koeniger, Andreas ;
Koehler, Werner .
ACS NANO, 2012, 6 (05) :4400-4409
[20]   Theory of Optical Trapping by an Optical Vortex Beam [J].
Ng, Jack ;
Lin, Zhifang ;
Chan, C. T. .
PHYSICAL REVIEW LETTERS, 2010, 104 (10)