Shrinkage estimators for periodic autoregressions

被引:0
作者
Paap, Richard [1 ]
Franses, Philip Hans [1 ]
机构
[1] Erasmus Univ, Econometr Inst, POB 1738, NL-3000 DR Rotterdam, Netherlands
关键词
Periodic autoregression; Shrinkage; Pooling; Ridge; Lasso; Forecasting; VARIABLE SELECTION; SEASONAL FACTORS; MODELS; LASSO; HETEROGENEITY; REGRESSION;
D O I
10.1016/j.jeconom.2024.105937
中图分类号
F [经济];
学科分类号
02 ;
摘要
A periodic autoregression [PAR] is a seasonal time series model where the autoregressive parameters vary over the seasons. A drawback of PAR models is that the number of parameters increases dramatically when the number of seasons gets large. Hence, one needs many periods with intra-seasonal data to be able to get reliable parameter estimates. Therefore, these models are rarely applied for weekly or daily observations. In this paper we propose shrinkage estimators which shrink the periodic autoregressive parameters to a common value determined by the data. We derive the asymptotic properties of these estimators in case of a quadratic penalty and we illustrate the bias-variance trade-off. Empirical illustrations show that shrinkage improves forecasting with PAR models.
引用
收藏
页数:19
相关论文
共 44 条
  • [1] RELATIONSHIP BETWEEN VARIABLE SELECTION AND DATA AUGMENTATION AND A METHOD FOR PREDICTION
    ALLEN, DM
    [J]. TECHNOMETRICS, 1974, 16 (01) : 125 - 127
  • [2] Fourier-PARMA models and their application to river flows
    Anderson, Paul L.
    Tesfaye, Yonas Gebeyehu
    Meerschaert, Mark M.
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2007, 12 (05) : 462 - 472
  • [3] [Anonymous], 2004, Periodic Time Series Models
  • [4] Periodic autoregressive models for time series with integrated seasonality
    Baragona, Roberto
    Battaglia, Francesco
    Cucina, Domenico
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (04) : 694 - 712
  • [5] A note on the validity of cross-validation for evaluating autoregressive time series prediction
    Bergmeir, Christoph
    Hyndman, Rob J.
    Koo, Bonsoo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 120 : 70 - 83
  • [6] Group LASSO for Structural Break Time Series
    Chan, Ngai Hang
    Yau, Chun Yip
    Zhang, Rong-Mao
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (506) : 590 - 599
  • [7] Bootstrapping Lasso Estimators
    Chatterjee, A.
    Lahiri, S. N.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) : 608 - 625
  • [8] Chatterjee A., Sankhy: Indian J. Stat., V73-A, P5
  • [9] Multiple changepoint detection for periodic autoregressive models with an application to river flow analysis
    Cucina, Domenico
    Rizzo, Manuel
    Ursu, Eugen
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (4-6) : 1137 - 1157
  • [10] COMPARING PREDICTIVE ACCURACY
    DIEBOLD, FX
    MARIANO, RS
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1995, 13 (03) : 253 - 263