Data-driven control of echo state-based recurrent neural networks with robust stability guarantees

被引:0
|
作者
D'Amico, William [1 ]
La Bella, Alessio [1 ]
Farina, Marcello [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron, Informaz & Bioingn, Via Ponzio 34-5, I-20133 Milan, Italy
关键词
Recurrent neural networks; Linear matrix inequalities; Data-based control; CONTROL DESIGN; SYSTEMS;
D O I
10.1016/j.sysconle.2024.105974
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work we propose a new data-based approach for robust controller design for a rather general class of recurrent neural networks affected by bounded measurement noise. We first identify the model set compatible with available data in a selected model class via set membership (SM). Then, incremental input-to-state stability and desired performances for the closed loop system are enforced robustly to all models in the identified model set via a linear matrix inequality (LMI) optimization problem. Numerical results show the effectiveness of the comprehensive method.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Integrating Recurrent Neural Networks With Data Assimilation for Scalable Data-Driven State Estimation
    Penny, S. G.
    Smith, T. A.
    Chen, T-C
    Platt, J. A.
    Lin, H-Y
    Goodliff, M.
    Abarbanel, H. D., I
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (03)
  • [2] Echo State Networks Based Data-Driven Adaptive Fault Tolerant Control With Its Application to Electromechanical System
    Liu, Lei
    Wang, Zhanshan
    Yao, Xianshuang
    Zhang, Huaguang
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (03) : 1372 - 1382
  • [3] Robust direct data-driven controller tuning with an application to vehicle stability control
    Formentin, S.
    Garatti, S.
    Rallo, G.
    Savaresi, S. M.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (12) : 3752 - 3765
  • [4] Data-Driven Control for Continuum Robots Based on Discrete Zeroing Neural Networks
    Tan, Ning
    Yu, Peng
    Zhong, Zhaohui
    Zhang, Yunong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 7088 - 7098
  • [5] Data-Driven Tabulation for Chemistry Integration Using Recurrent Neural Networks
    Zhang, Yu
    Lin, Qingguo
    Du, Wenli
    Qian, Feng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) : 5392 - 5402
  • [6] The Golem: A General Data-Driven Model for Oil & Gas Forecasting Based on Recurrent Neural Networks
    Martinez, Victor
    Rocha, Anderson
    IEEE ACCESS, 2023, 11 : 41105 - 41132
  • [7] Data-driven constitutive model of complex fluids using recurrent neural networks
    Howon Jin
    Sangwoong Yoon
    Frank C. Park
    Kyung Hyun Ahn
    Rheologica Acta, 2023, 62 : 569 - 586
  • [8] Data-driven IQC-Based Uncertainty Modelling for Robust Control Design
    Gupta, Vaibhav
    Klauser, Elias
    Karimi, Alireza
    IFAC PAPERSONLINE, 2023, 56 (02): : 4789 - 4795
  • [9] Data-driven constitutive model of complex fluids using recurrent neural networks
    Jin, Howon
    Yoon, Sangwoong
    Park, Frank C.
    Ahn, Kyung Hyun
    RHEOLOGICA ACTA, 2023, 62 (10) : 569 - 586
  • [10] An Incremental Input-to-State Stability Condition for a Class of Recurrent Neural Networks
    D'Amico, William
    La Bella, Alessio
    Farina, Marcello
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (04) : 2221 - 2236