Randomized iterative feedback tuning for fast MIMO feedback design of a mechatronic system

被引:0
|
作者
Aarnoudse, Leontine [1 ]
den Toom, Peter [1 ]
Oomen, Tom [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn Control Syst Technol, Eindhoven, Netherlands
[2] Delft Univ Technol, Delft Ctr Syst & Control, Delft, Netherlands
关键词
Iterative feedback tuning; MIMO systems; Gradient estimation; Data-driven control; CONTROLLERS;
D O I
10.1016/j.conengprac.2024.106152
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Iterative feedback tuning (IFT) enables the tuning of feedback controllers using only measured data to obtain the gradient of a cost criterion. The aim of this paper is to reduce the required number of experiments for MIMO IFT. It is shown that, through a randomization technique, an unbiased gradient estimate can be obtained from a single dedicated experiment, regardless of the size of the MIMO system. The gradient estimate is used in a stochastic gradient descent algorithm. The approach is experimentally validated on a mechatronic system, showing a significantly reduced number of experiments compared to standard IFT.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Control of photoresist film thickness: Iterative feedback tuning approach
    Tay, A
    Ho, WK
    Deng, JW
    Lok, BK
    COMPUTERS & CHEMICAL ENGINEERING, 2006, 30 (03) : 572 - 579
  • [32] Iterative Feedback Tuning for regulatory control systems with measurable disturbances
    Takano, Y.
    Masuda, S.
    IFAC PAPERSONLINE, 2021, 54 (14): : 245 - 250
  • [33] Output tracking control of pH neutralisation with iterative feedback tuning
    Ma, Ruizi
    Zhang, Guoshan
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2016, 25 (01) : 62 - 70
  • [34] Bio-Inspired Design and Iterative Feedback Tuning Control of a Wearable Ankle Rehabilitation Robot
    Zhou, Liang
    Meng, Wei
    Lu, Charles Z.
    Liu, Quan
    Ai, Qingsong
    Xie, Sheng Q.
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2016, 16 (04)
  • [35] Virtual Reference Feedback Tuning for MIMO Plants by Subspace Identification
    Ichihara, Hiroyuki
    Kiyotani, Akihide
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 830 - 835
  • [36] Model-based iterative feedback tuning for industrial PID controllers
    Milosawlewitsch-Aliaga, M.
    Osornio-Rios, R. A.
    Romero-Troncoso, R. J.
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2010, 69 (12): : 930 - 936
  • [37] Iterative Feedback Tuning of Model-Free Intelligent PID Controllers
    Baciu, Andrei
    Lazar, Corneliu
    ACTUATORS, 2023, 12 (02)
  • [38] A Novel Design of Iterative Learning Control with Feedback Structure
    Chi Ronghu
    Lin Na
    Zhang Ruikun
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 3152 - 3156
  • [39] Realizable MIMO decision feedback equalizers:: Structure and design
    Tidestav, C
    Ahlén, A
    Sternad, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (01) : 121 - 133
  • [40] Robust design methodology for simultaneous feedforward and feedback tuning
    Rodriguez, Carlos
    Normey-Rico, Julio E.
    Guzman, Jose Luis
    Berenguel, Manuel
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (01) : 84 - 94