Utilization of tubular bamboo biochar anode with different lengths in sediment microbial fuel cells

被引:3
|
作者
Noor, Nurfarhana Nabila Mohd [1 ]
Kim, Kyeongmin [2 ]
Kim, Kyunghoi [1 ]
机构
[1] Pukyong Natl Univ, Dept Ocean Engn, Busan 48513, South Korea
[2] Shizuoka Univ, Fac Global Interdisciplinary Sci & Innovat, Shizuoka 4228529, Japan
基金
新加坡国家研究基金会;
关键词
Tubular bamboo biochar anode; Oyster farming; Bioelectricity generation; Sediment remediation; Sediment microbial fuel cell; AIR-CATHODE; ELECTRICITY-GENERATION; WASTE-WATER; PERFORMANCE; CATALYST; CHARCOAL; BIOELECTRICITY; REMOVAL; ENERGY;
D O I
10.1016/j.fuel.2024.133371
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The amount of electricity generated depends on electron transfer, so the length of anode as electrode could be the determining factor for improving the performance of sediment microbial fuel cells (SMFC). In this study, tubular bamboo biochar with different lengths, namely SMFC-A3 (3 cm), SMFC-A6 (6 cm) and SMFC-A9 (9 cm), were used as anode material to reduce cost and carbon footprint in SMFC. We investigated the bioelectricity generation and anoxic sediment remediation from oyster farm of Tongyeong City, South Korea through SMFC system. Tubular bamboo biochar was characterized by elemental analysis (elemental composition), FESEM (morphology), TGA (weight loss) and XRD (crystalline framework). It was found that SMFC performance increased with increasing length of anode to improve the quality of anaerobic sediment (p < 0.05). SMFC-A6 generated the highest voltage of 50 mV among all cases. Polarization curves showed that SMFC-A6 achieved the highest maximum power density of 0.060 mW/m(2), with a fourfold and a onefold increase compared to SMFCA3 and SMFC-A9, respectively. In SMFC-A9, increase in redox potential and decrease in chemical oxygen demand (COD) was observed (-197 mV, 11 mg/L), compared to control case with sediment only (-240 mV, 25 mg/L). Removal efficiency of COD in SMFC-A9 and SMFC-A6 was 67 % and 61 % higher than that in SMFC-A3 (48 %). The result of the study could provide a simple strategy for coastal sediment remediation while generating bioelectricity.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Suitability of granular carbon as an anode material for sediment microbial fuel cells
    Arends, Jan B. A.
    Blondeel, Evelyne
    Tennison, Steve R.
    Boon, Nico
    Verstraete, Willy
    JOURNAL OF SOILS AND SEDIMENTS, 2012, 12 (07) : 1197 - 1206
  • [22] Performance of freshwater sediment microbial fuel cells: Consistency
    Liu, Lihong
    Chou, Tzu-Yang
    Lee, Chin-Yu
    Lee, Duu-Jong
    Su, Ay
    Lai, Juin-Yih
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (07) : 4504 - 4508
  • [23] Straw-derived macroporous biochar as high-performance anode in microbial fuel cells
    Yan, Jiali
    Zhang, Mingchuan
    Chen, Xi
    Chen, Chuanjie
    Xu, Xinyang
    Jiang, Shaoyan
    PROCESS BIOCHEMISTRY, 2024, 145 : 113 - 121
  • [24] Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances
    Ahn, Yongtae
    Logan, Bruce E.
    ENERGY & FUELS, 2013, 27 (01) : 271 - 276
  • [25] Scale-up of sediment microbial fuel cells
    Ewing, Timothy
    Phuc Thi Ha
    Babauta, Jerome T.
    Tang, Nghia Trong
    Heo, Deukhyoun
    Beyenal, Haluk
    JOURNAL OF POWER SOURCES, 2014, 272 : 311 - 319
  • [26] Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells
    Kumar, G. Gnana
    Sarathi, V. G. Sathiya
    Nahm, Kee Suk
    BIOSENSORS & BIOELECTRONICS, 2013, 43 : 461 - 475
  • [27] Enhanced power generation from algal biomass using multi-anode membrane-less sediment microbial fuel cell
    Taskan, Banu
    Bakir, Merve
    Taskan, Ergin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (02) : 2011 - 2022
  • [28] The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level
    Gupta, Supriya
    Patro, Ashmita
    Mittal, Yamini
    Dwivedi, Saurabh
    Saket, Palak
    Panja, Rupobrata
    Saeed, Tanveer
    Martinez, Fernando
    Yadav, Asheesh Kumar
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 879
  • [29] Polyaniline nanofiber: an excellent anode material for microbial fuel cells
    Ahmed, Jalal
    Kim, Sunghyun
    RSC ADVANCES, 2024, 14 (46) : 34498 - 34503
  • [30] Effect of submerged and floating cathodes on sustainable bioelectricity generation and benthic nutrient removal in sediment microbial fuel cells
    Noor, Nurfarhana Nabila Mohd
    Oktavitri, Nur Indradewi
    Kim, Kyunghoi
    FUEL, 2024, 367