Utilization of tubular bamboo biochar anode with different lengths in sediment microbial fuel cells

被引:3
|
作者
Noor, Nurfarhana Nabila Mohd [1 ]
Kim, Kyeongmin [2 ]
Kim, Kyunghoi [1 ]
机构
[1] Pukyong Natl Univ, Dept Ocean Engn, Busan 48513, South Korea
[2] Shizuoka Univ, Fac Global Interdisciplinary Sci & Innovat, Shizuoka 4228529, Japan
基金
新加坡国家研究基金会;
关键词
Tubular bamboo biochar anode; Oyster farming; Bioelectricity generation; Sediment remediation; Sediment microbial fuel cell; AIR-CATHODE; ELECTRICITY-GENERATION; WASTE-WATER; PERFORMANCE; CATALYST; CHARCOAL; BIOELECTRICITY; REMOVAL; ENERGY;
D O I
10.1016/j.fuel.2024.133371
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The amount of electricity generated depends on electron transfer, so the length of anode as electrode could be the determining factor for improving the performance of sediment microbial fuel cells (SMFC). In this study, tubular bamboo biochar with different lengths, namely SMFC-A3 (3 cm), SMFC-A6 (6 cm) and SMFC-A9 (9 cm), were used as anode material to reduce cost and carbon footprint in SMFC. We investigated the bioelectricity generation and anoxic sediment remediation from oyster farm of Tongyeong City, South Korea through SMFC system. Tubular bamboo biochar was characterized by elemental analysis (elemental composition), FESEM (morphology), TGA (weight loss) and XRD (crystalline framework). It was found that SMFC performance increased with increasing length of anode to improve the quality of anaerobic sediment (p < 0.05). SMFC-A6 generated the highest voltage of 50 mV among all cases. Polarization curves showed that SMFC-A6 achieved the highest maximum power density of 0.060 mW/m(2), with a fourfold and a onefold increase compared to SMFCA3 and SMFC-A9, respectively. In SMFC-A9, increase in redox potential and decrease in chemical oxygen demand (COD) was observed (-197 mV, 11 mg/L), compared to control case with sediment only (-240 mV, 25 mg/L). Removal efficiency of COD in SMFC-A9 and SMFC-A6 was 67 % and 61 % higher than that in SMFC-A3 (48 %). The result of the study could provide a simple strategy for coastal sediment remediation while generating bioelectricity.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Tubular bamboo charcoal for anode in microbial fuel cells
    Zhang, Jun
    Li, Jun
    Ye, Dingding
    Zhu, Xun
    Liao, Qiang
    Zhang, Biao
    JOURNAL OF POWER SOURCES, 2014, 272 : 277 - 282
  • [2] Optimization of inner diameter of tubular bamboo charcoal anode for a microbial fuel cell
    Li, Jun
    Zhang, Jun
    Ye, Dingding
    Zhu, Xun
    Liao, Qiang
    Zheng, Jili
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (33) : 19242 - 19248
  • [3] Long term testing of Microbial Fuel Cells: Comparison of different anode materials
    Hidalgo, D.
    Tommasi, T.
    Velayutham, K.
    Ruggeri, B.
    BIORESOURCE TECHNOLOGY, 2016, 219 : 37 - 44
  • [4] Advances in Anode Materials for Microbial Fuel Cells
    Kong, Shutian
    Zhao, Juntao
    Li, Feng
    Chen, Tao
    Wang, Zhiwen
    ENERGY TECHNOLOGY, 2022, 10 (12)
  • [5] Microbial community structure of anode electrodes in microbial fuel cells and microbial electrolysis cells
    Almatouq, Abdullah
    Babatunde, Akintunde O.
    Khajah, Mishari
    Webster, Gordon
    Alfodari, Mohammad
    JOURNAL OF WATER PROCESS ENGINEERING, 2020, 34
  • [6] The Application of Sediment Microbial Fuel Cells in Aquacultural Sediment Remediation
    Qi, Jiarui
    Sun, Zhuteng
    Zhang, Jinfeng
    Ye, Chen
    WATER, 2022, 14 (17)
  • [7] Burial depth of anode affected the bacterial community structure of sediment microbial fuel cells
    Wu, Yi-cheng
    Wu, Hong-jie
    Fu, Hai-yan
    Dai, Zhineng
    Wang, Ze-jie
    ENVIRONMENTAL ENGINEERING RESEARCH, 2020, 25 (06) : 871 - 877
  • [8] Enhanced Power Extraction with Sediment Microbial Fuel Cells by Anode Alternation
    Quaglio, Marzia
    Ahmed, Daniyal
    Massaglia, Giulia
    Sacco, Adriano
    Margaria, Valentina
    Pirri, Candido Fabrizio
    FUELS, 2021, 2 (02): : 168 - 178
  • [9] Enriched microbial fuel cells; Enhancing anode fillers to purify eutrophic water
    Tesfahunegn, Awet Arefe
    Song, Xinshan
    Wang, Yuhui
    Si, Zhihao
    Abraha, Kahsay Gebresilassie
    Mihretu, Libargachew Demlie
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2023, 194
  • [10] UTILIZATION OF MICROBIAL FUEL CELLS FOR THE TREATMENT OF WASTEWATER FROM A PIG FARM
    Baltazar Estrada-Arriaga, Edson
    Garcia-Sanchez, Liliana
    Antonio Garzon-Zuniga, Marco
    Gonzalo Gonzalez-Rodriguez, Jose
    FRESENIUS ENVIRONMENTAL BULLETIN, 2015, 24 (08): : 2512 - 2518