ITER instrumentation and control system towards long pulse operation

被引:0
|
作者
Yonekawa, Izuru [1 ]
Fernandez, Antonio Vergara [1 ]
Fourneron, Jean-Marc [1 ]
Journeaux, Jean-Yves [1 ]
Klotz, Wolf-Dieter [1 ]
Wallander, Anders [1 ]
机构
[1] ITER Organization, Route de Vinon sur Verdon
关键词
CIS; CODAC; CODAC core system; CSS; EPICS; I&C; ITER; PCDH;
D O I
10.1585/pfr.7.2505047
中图分类号
学科分类号
摘要
ITER is a long-pulse tokamak with elongated plasma. The nominal inductive operation produces a D-T fusion power of 500MW for a burn length of 300-500 s, with the injection of 50MW of auxiliary power. With non-inductive current drive from the H&CD systems, the burn duration is envisaged to be extended to 3000 s. The term ITER Instrumentation& Control (I&C) includes everything required to operate the ITER facility. It comprises three vertical tiers; conventional control, interlock system and safety system, and two horizontal layers; central I&C systems and plant system I&C. CODAC (Control, Data Access and Communication) system forms the upper level of the hierarchy, and is the conventional central control system of ITER architecture. CODAC system is responsible for integrating all plant system I&C and enable operation of ITER as a single integrated plant. CODAC system provides overall plant systems coordination, supervision, plant status monitoring, alarm handling, data archiving, plant visualization (HMI) and remote experiment functions. CIS (Central Interlock System) and CSS (Central Safety System) also form the upper level of the hierarchy to supervising and integrating all plant system interlock and safety functions. Plant system I&C forms the lower level of the hierarchy, and provide dedicated plant data acquisition, plant status monitoring, plant control and plant protection functions to perform individual plant system operation under the supervision of central I&C systems. © 2012 The Japan Society of Plasma Science and Nuclear Fusion Research.
引用
收藏
相关论文
共 50 条
  • [31] An integrated architecture for the ITER RH control system
    Hamilton, David Thomas
    Tesini, Alessandro
    FUSION ENGINEERING AND DESIGN, 2012, 87 (09) : 1611 - 1615
  • [32] PRELIMINARY DESIGN OF ITER CRYOPUMPS FRONT-END CRYODISTRIBUTION SYSTEM INSTRUMENTATION AND CONTROLS
    Boussier, B.
    Wolfers, G.
    Pearce, R.
    Dremel, M.
    Mokashi, D.
    Mayaux, C.
    2015 IEEE 26TH SYMPOSIUM ON FUSION ENGINEERING (SOFE), 2015,
  • [33] The effect of pulse operation on tritium permeation and inventory in ITER's plasma-facing components
    Housiadas, C
    Perujo, A
    FUSION TECHNOLOGY, 2000, 37 (01): : 68 - 73
  • [34] Study on the Four Quadrants Operation of ITER Poloidal Field Converter System
    Yuan, H. W.
    Huang, L. S.
    Fu, P.
    Gao, G.
    Song, Z. Q.
    2014 INTERNATIONAL ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2014, : 853 - 857
  • [35] Concept of operation of the remote handling system for the ITER vacuum vessel pressure suppression system
    Choi, Chang-Hwan
    Shi, Shanshuang
    Yokoyama, Taku
    Hall, Christopher
    Keogh, Keelan
    Talbot, Paul
    FUSION ENGINEERING AND DESIGN, 2021, 173
  • [36] Demonstration of synchronous control of EC TL switch and gyrotron for ITER EC system
    Oda, Yasuhisa
    Ohshima, Katsumi
    Hayashi, Kazuo
    Ikeda, Ryosuke
    Takahashi, Koji
    Sakamoto, Keishi
    Gandini, Franco
    Purohit, Dharmesh
    Yonekawa, Izuru
    Omori, Toshimichi
    Darbos, Caroline
    Henderson, Mark
    FUSION ENGINEERING AND DESIGN, 2017, 123 : 371 - 375
  • [37] Control and Operation Mode of ITER High-Power DC Testing Platform
    Yue Ji
    Hongwen Yuan
    Liuwei Xu
    Yanan Wu
    Qi Guo
    Huafeng Mao
    Jun Li
    Journal of Fusion Energy, 2015, 34 : 1483 - 1488
  • [38] Control and Operation Mode of ITER High-Power DC Testing Platform
    Ji, Yue
    Yuan, Hongwen
    Xu, Liuwei
    Wu, Yanan
    Guo, Qi
    Mao, Huafeng
    Li, Jun
    JOURNAL OF FUSION ENERGY, 2015, 34 (06) : 1483 - 1488
  • [39] In-vessel components imaging systems: From the present experience towards ITER safe operation
    Travere, J. -M.
    FUSION ENGINEERING AND DESIGN, 2009, 84 (7-11) : 1862 - 1866
  • [40] Overview of the preliminary design of the ITER plasma control system
    Snipes, J. A.
    Albanese, R.
    Ambrosino, G.
    Ambrosino, R.
    Amoskov, V.
    Blanken, T. C.
    Bremond, S.
    Cinque, M.
    de Tommasi, G.
    de Vries, P. C.
    Eidietis, N.
    Felici, F.
    Felton, R.
    Ferron, J.
    Formisano, A.
    Gribov, Y.
    Hosokawa, M.
    Hyatt, A.
    Humphreys, D.
    Jackson, G.
    Kavin, A.
    Khayrutdinov, R.
    Kim, D.
    Kim, S. H.
    Konovalov, S.
    Lamzin, E.
    Lehnen, M.
    Lukash, V.
    Lomas, P.
    Mattei, M.
    Mineev, A.
    Moreau, P.
    Neu, G.
    Nouailletas, R.
    Pautasso, G.
    Pironti, A.
    Rapson, C.
    Raupp, G.
    Ravensbergen, T.
    Rimini, F.
    Schneider, M.
    Travere, J. -M.
    Treutterer, W.
    Villone, F.
    Walker, M.
    Welander, A.
    Winter, A.
    Zabeo, L.
    NUCLEAR FUSION, 2017, 57 (12)