ITER instrumentation and control system towards long pulse operation

被引:0
|
作者
Yonekawa, Izuru [1 ]
Fernandez, Antonio Vergara [1 ]
Fourneron, Jean-Marc [1 ]
Journeaux, Jean-Yves [1 ]
Klotz, Wolf-Dieter [1 ]
Wallander, Anders [1 ]
机构
[1] ITER Organization, Route de Vinon sur Verdon
关键词
CIS; CODAC; CODAC core system; CSS; EPICS; I&C; ITER; PCDH;
D O I
10.1585/pfr.7.2505047
中图分类号
学科分类号
摘要
ITER is a long-pulse tokamak with elongated plasma. The nominal inductive operation produces a D-T fusion power of 500MW for a burn length of 300-500 s, with the injection of 50MW of auxiliary power. With non-inductive current drive from the H&CD systems, the burn duration is envisaged to be extended to 3000 s. The term ITER Instrumentation& Control (I&C) includes everything required to operate the ITER facility. It comprises three vertical tiers; conventional control, interlock system and safety system, and two horizontal layers; central I&C systems and plant system I&C. CODAC (Control, Data Access and Communication) system forms the upper level of the hierarchy, and is the conventional central control system of ITER architecture. CODAC system is responsible for integrating all plant system I&C and enable operation of ITER as a single integrated plant. CODAC system provides overall plant systems coordination, supervision, plant status monitoring, alarm handling, data archiving, plant visualization (HMI) and remote experiment functions. CIS (Central Interlock System) and CSS (Central Safety System) also form the upper level of the hierarchy to supervising and integrating all plant system interlock and safety functions. Plant system I&C forms the lower level of the hierarchy, and provide dedicated plant data acquisition, plant status monitoring, plant control and plant protection functions to perform individual plant system operation under the supervision of central I&C systems. © 2012 The Japan Society of Plasma Science and Nuclear Fusion Research.
引用
收藏
相关论文
共 50 条
  • [21] Progress in XRCS-Survey plant instrumentation and control design for ITER
    Varshney, Sanjeev
    Jha, Shivakant
    Simrock, Stefan
    Barnsley, Robin
    Martin, Vincent
    Mishra, Sapna
    Patil, Prabhakant
    Patel, Shreyas
    Kumar, Vinay
    FUSION ENGINEERING AND DESIGN, 2016, 112 : 877 - 882
  • [22] EPICS application for ITER RH supervisory control system
    Leone, Dario
    Carrubba, Valeria
    Mazzaro, Silvio
    Nobili, Matteo
    Cuc, Daniela
    Hamilton, David
    FUSION ENGINEERING AND DESIGN, 2021, 169
  • [23] Assessment of operational space for long-pulse scenarios in ITER
    Polevoi, A. R.
    Loarte, A.
    Hayashi, N.
    Kim, H. S.
    Kim, S. H.
    Koechl, F.
    Kukushkin, A. S.
    Leonov, V. M.
    Medvedev, S. Yu.
    Murakami, M.
    Na, Y. S.
    Pankin, A. Y.
    Park, J. M.
    Snyder, P. B.
    Snipes, J. A.
    Zhogolev, V. E.
    NUCLEAR FUSION, 2015, 55 (06)
  • [24] Heating and current drive requirements towards Steady State operation in ITER
    Poli, F. M.
    Bonoli, P. T.
    Kessel, C. E.
    Batchelor, D. B.
    Gorelenkova, M.
    Harvey, B.
    Petrov, Y.
    RADIOFREQUENCY POWER IN PLASMAS, 2014, 1580 : 33 - 40
  • [25] Work-flow process from simulation to operation for the Plasma Control System for the ITER first plasma
    Zabeo, L.
    de Vries, P. C.
    Snipes, J. A.
    Winter, A.
    Walker, M.
    Treutterer, W.
    De Tommasi, G.
    Ambrosino, G.
    Cinque, M.
    Rimini, F.
    Bremond, S.
    Anand, H.
    Lee, W-R
    Bauvier, B.
    Nunes, I
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 1446 - 1449
  • [26] An overview of control system for the ITER electron cyclotron system
    Purohit, D.
    Bigelow, T.
    Billava, D.
    Bonicelli, T.
    Caughman, J.
    Darbos, C.
    Denisov, G.
    Gandini, F.
    Gassmann, T.
    Henderson, M.
    Journeux, J. Y.
    Kajiwara, K.
    Kobayashi, N.
    Nazare, C.
    Oda, Y.
    Omori, T.
    Rao, S. L.
    Rasmussen, D.
    Ronden, D.
    Saibene, G.
    Sakamoto, K.
    Sartori, F.
    Takahashi, K.
    Temkin, R.
    FUSION ENGINEERING AND DESIGN, 2011, 86 (6-8) : 959 - 962
  • [27] PHYSICS OF PLASMA CONTROL TOWARD STEADY-STATE OPERATION OF ITER
    Kikuchi, M.
    Campbell, D. J.
    FUSION SCIENCE AND TECHNOLOGY, 2011, 59 (03) : 440 - 468
  • [28] Implementation strategy for the ITER plasma control system
    Winter, A.
    Ambrosino, G.
    Bauvir, B.
    De Tommasi, G.
    Humphreys, D. A.
    Mattei, M.
    Neto, A.
    Raupp, G.
    Snipes, J. A.
    Stephen, A. V.
    Treutterer, W.
    Walker, M. L.
    Zabeo, L.
    FUSION ENGINEERING AND DESIGN, 2015, 96-97 : 720 - 723
  • [29] The control system of the ITER vertical stabilization converter
    Gaio, E
    Piovan, R
    Toigo, V
    Benfatto, I
    FUSION ENGINEERING AND DESIGN, 2003, 66-68 : 719 - 725
  • [30] Physics requirements for the ITER plasma control system
    Snipes, J. A.
    Gribov, Y.
    Winter, A.
    FUSION ENGINEERING AND DESIGN, 2010, 85 (3-4) : 461 - 465