Status and perspectives of key materials for PEM electrolyzer

被引:183
作者
Zhang, Kexin [1 ]
Liang, Xiao [1 ]
Wang, Lina [1 ]
Sun, Ke [1 ]
Wang, Yuannan [1 ]
Xie, Zhoubing [1 ]
Wu, Qiannan [1 ]
Bai, Xinyu [1 ]
Hamdy, Mohamed S. [2 ]
Chen, Hui [1 ]
Zou, Xiaoxin [1 ]
机构
[1] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China
[2] King Khalid Univ, Coll Sci, Dept Chem, Catalysis Res Grp CRG, Abha 61413, Saudi Arabia
来源
NANO RESEARCH ENERGY | 2022年 / 1卷 / 03期
基金
中国国家自然科学基金; 国家重点研发计划; 中国博士后科学基金;
关键词
proton exchange membrane water electrolyzer (PEMWE); hydrogen production; membrane electrode assembly; bipolar; plate; gas diffusion layer; OXYGEN EVOLUTION REACTION; EFFICIENT HYDROGEN-EVOLUTION; LIQUID/GAS DIFFUSION LAYERS; GAS CROSSOVER SUPPRESSION; ANODIC CATALYST SUPPORT; WATER ELECTROLYSIS; BIPOLAR PLATES; LOW-COST; DEGRADATION MECHANISMS; COMPOSITE MEMBRANE;
D O I
10.26599/NRE.2022.9120032
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Proton exchange membrane water electrolyzer (PEMWE) represents a promising technology for the sustainable production of hydrogen, which is capable of efficiently coupling to intermittent electricity from renewable energy sources (e.g., solar and wind). The technology with compact stack structure has many notable advantages, including large current density, high hydrogen purity, and great conversion efficiency. However, the use of expensive electrocatalysts and construction materials leads to high hydrogen production costs and limited application. In this review, recent advances made in key materials of PEMWE are summarized. First, we present a brief overview about the basic principles, thermodynamics, and reaction kinetics of PEMWE. We then describe the cell components of PEMWE and their respective functions, as well as discuss the research status of key materials such as membrane, electrocatalysts, membrane electrode assemblies, gas diffusion layer, and bipolar plate. We also attempt to clarify the degradation mechanisms of PEMWE under a real operating environment, including catalyst degradation, membrane degradation, bipolar plate degradation, and gas diffusion layer degradation. We finally propose several future directions for developing PEMWE through devoting more efforts to the key materials.
引用
收藏
页数:23
相关论文
共 199 条
[1]   A Roadmap to Low-Cost Hydrogen with Hydroxide Exchange Membrane Electrolyzers [J].
Abbasi, Reza ;
Setzler, Brion P. ;
Lin, Saisai ;
Wang, Junhuo ;
Zhao, Yun ;
Xu, Hui ;
Pivovar, Bryan ;
Tian, Boyuan ;
Chen, Xi ;
Wu, Gang ;
Yan, Yushan .
ADVANCED MATERIALS, 2019, 31 (31)
[2]   Platinum oxide as a catalyst in the reduction of organic compounds III Preparation and properties of the oxide of platinum obtained by the fusion of ceiloroplatinic acid with sodium nitrate [J].
Adams, R ;
Shriner, RL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1923, 45 :2171-2179
[3]   Phosphoric acid doped membranes based on Nafion®, PBI and their blends - Membrane preparation, characterization and steam electrolysis testing [J].
Aili, David ;
Hansen, Martin Kalmar ;
Pan, Chao ;
Li, Qingfeng ;
Christensen, Erik ;
Jensen, Jens Oluf ;
Bjerrum, Niels J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (12) :6985-6993
[4]   Nafion-Based Proton-Exchange Membranes Built on Cross-Linked Semi-Interpenetrating Polymer Networks between Poly(acrylic acid) and Poly(vinyl alcohol) [J].
Al Munsur, Abu Zafar ;
Goo, Bon-Hyuk ;
Kim, Youngkwang ;
Kwon, Oh Joong ;
Paek, Sae Yane ;
Lee, So Young ;
Kim, Hyoung-Juhn ;
Kim, Tae-Hyun .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (24) :28188-28200
[5]   Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment [J].
An, Li ;
Wei, Chao ;
Lu, Min ;
Liu, Hanwen ;
Chen, Yubo ;
Scherer, Guenther G. ;
Fisher, Adrian C. ;
Xi, Pinxian ;
Xu, Zhichuan J. ;
Yan, Chun-Hua .
ADVANCED MATERIALS, 2021, 33 (20)
[6]   High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser [J].
Antonucci, V. ;
Di Blasi, A. ;
Baglio, V. ;
Ornelas, R. ;
Matteucci, F. ;
Ledesma-Garcia, J. ;
Arriaga, L. G. ;
Arico, A. S. .
ELECTROCHIMICA ACTA, 2008, 53 (24) :7350-7356
[7]   Research Advances Towards Low Cost, High Efficiency PEM Electrolysis [J].
Ayers, K. E. ;
Anderson, E. B. ;
Capuano, C. B. ;
Carter, B. D. ;
Dalton, L. T. ;
Hanlon, G. ;
Manco, J. ;
Niedzwiecki, M. .
POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01) :3-15
[8]   Solid Polymer Electrolyte Water Electrolyser Based on Nafion-TiO2 Composite Membrane for High Temperature Operation [J].
Baglio, V. ;
Ornelas, R. ;
Matteucci, F. ;
Martina, F. ;
Ciccarella, G. ;
Zama, I. ;
Arriaga, L. G. ;
Antonucci, V. ;
Arico, A. S. .
FUEL CELLS, 2009, 9 (03) :247-252
[9]   ELECTROCATALYTIC OXYGEN EVOLUTION ON REACTIVELY SPUTTERED ELECTROCHROMIC IRIDIUM OXIDE-FILMS [J].
BENI, G ;
SCHIAVONE, LM ;
SHAY, JL ;
DAUTREMONTSMITH, WC ;
SCHNEIDER, BS .
NATURE, 1979, 282 (5736) :281-283
[10]   Iridium Oxide Coatings with Templated Porosity as Highly Active Oxygen Evolution Catalysts: Structure-Activity Relationships [J].
Bernicke, Michael ;
Ortel, Erik ;
Reier, Tobias ;
Bergmann, Arno ;
de Araujo, Jorge Ferreira ;
Strasser, Peter ;
Kraehnert, Ralph .
CHEMSUSCHEM, 2015, 8 (11) :1908-1915