Wavelength conversion based on cross-phase modulation in microstructure fibers

被引:0
作者
Wang, Zinan [1 ]
Xu, Yongzhao [1 ]
Zhang, Xia [1 ]
Huang, Yongqing [1 ]
Ren, Xiaomin [1 ]
机构
[1] Key Laboratory of Optical Communication and Lightwave Technologies, Beijing University of Posts and Telecommunications
来源
Zhongguo Jiguang/Chinese Journal of Lasers | 2008年 / 35卷 / 03期
关键词
Cross-phase modulation; Microstructure fiber; Optical communication; Wavelength conversion;
D O I
10.3788/CJL20083503.0414
中图分类号
学科分类号
摘要
All optical wavelength conversion of the 10-GHz clock signal is demonstrated based on cross-phase modulation of optical pulses in an 80 m long microstructure fiber (MSF), and the conversion bandwidth is over 30 nm. The experimental microstructure fiber with a nonlinear coefficient of ∼11 W-1·km-1 has small normal dispersion and flat dispersion curve from 1530 nm to 1570 nm. The experimental results show that a compact wavelength converter can be realized by utilizing this microstructure fiber.
引用
收藏
页码:414 / 417
页数:3
相关论文
共 20 条
  • [1] Yoo S.J.B., Wavelength conversion technologies for WDM network applications, J. Lightwave Technol., 14, 6, pp. 955-966, (1996)
  • [2] Tanemura T., Goh C.S., Kikuchi K., Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing, IEEE Photon. Technol. Lett., 16, 2, pp. 551-553, (2004)
  • [3] Yu J.J., Jeppesen P., 80-Gb/s wavelength conversion based on cross-phase modulation in high-nonlinearity dispersion-shifted fiber and optical filtering, IEEE Photon. Technol. Lett., 13, 8, pp. 833-835, (2001)
  • [4] Kwok C.H., Lee S.H., Chow K.K., Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM, IEEE Photon. Technol. Lett., 17, 12, pp. 2655-2657, (2005)
  • [5] Andersen P.A., Tokle T., Geng Y., Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber, IEEE Photon. Technol. Lett., 17, 9, pp. 1908-1910, (2005)
  • [6] Knight J.C., Birks T.A., St. Russell P.J., All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., 21, 19, pp. 1547-1549, (1996)
  • [7] Birks T.A., Mogilevtsev D., Knight J.C., Dispersion compensation using single material fibers, IEEE Photon. Technol. Lett., 11, 6, pp. 674-676, (1999)
  • [8] Ferrando A., Silvestre E., Miret J.J., Nearly zero ultraflattened dispersion in photonic crystal fibers, Opt. Lett., 25, 11, pp. 790-792, (2000)
  • [9] Knight J.C., Arriaga J., Birks T.A., Anomalous dispersion in photonic crystal fiber, IEEE Photon. Technol. Lett., 12, 7, pp. 807-809, (2000)
  • [10] Wang Z., Ren X., Zhang X., A novel design for broadband dispersion compensation microstructure fiber, Chin. Opt. Lett., 4, 11, pp. 625-627, (2006)