Physics-based linear regression for high-dimensional forward uncertainty quantification

被引:0
作者
Wang, Ziqi [1 ]
机构
[1] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
关键词
High-dimensional regression; Physics-based surrogate modeling; Uncertainty quantification;
D O I
10.1016/j.jcp.2024.113668
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce linear regression using physics-based basis functions optimized through the geometry of an inner product space. This method addresses the challenge of surrogate modeling with high-dimensional input, as the physics-based basis functions encode problem-specific information. We demonstrate the method using two proof-of-concept stochastic dynamic examples.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Uncertainty Quantification for Modern High-Dimensional Regression via Scalable Bayesian Methods
    Rajaratnam, Bala
    Sparks, Doug
    Khare, Kshitij
    Zhang, Liyuan
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (01) : 174 - 184
  • [2] Inverse regression-based uncertainty quantification algorithms for high-dimensional models: Theory and practice
    Li, Weixuan
    Lin, Guang
    Li, Bing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 321 : 259 - 278
  • [3] Uncertainty Quantification of Detonation with High-dimensional Parameter Uncertainty
    Liang X.
    Chen J.
    Wang R.
    Binggong Xuebao/Acta Armamentarii, 2020, 41 (04): : 692 - 701
  • [4] High-Dimensional Uncertainty Quantification via Tensor Regression With Rank Determination and Adaptive Sampling
    He, Zichang
    Zhang, Zheng
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2021, 11 (09): : 1317 - 1328
  • [5] Randomized physics-informed machine learning for uncertainty quantification in high-dimensional inverse problems
    Zong, Yifei
    Barajas-Solano, David
    Tartakovsky, Alexandre M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 519
  • [6] Progress of Tensor-Based High-Dimensional Uncertainty Quantification of Process Variations
    He, Zichang
    Zhang, Zheng
    2021 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2021,
  • [7] Robust Estimation of High-Dimensional Linear Regression With Changepoints
    Cui, Xiaolong
    Geng, Haoyu
    Wang, Zhaojun
    Zou, Changliang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (10) : 7297 - 7319
  • [8] Theoretical characterization of uncertainty in high-dimensional linear classification
    Clarte, Lucas
    Loureiro, Bruno
    Krzakala, Florent
    Zdeborova, Lenka
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (02):
  • [9] High-dimensional linear regression via implicit regularization
    Zhao, Peng
    Yang, Yun
    He, Qiao-Chu
    BIOMETRIKA, 2022, 109 (04) : 1033 - 1046
  • [10] Classifier-based adaptive polynomial chaos expansion for high-dimensional uncertainty quantification
    Thapa, Mishal
    Mulani, Sameer B.
    Paudel, Achyut
    Gupta, Subham
    Walters, Robert W.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 422