共 72 条
- [1] Verdoliva L., Media forensics and DeepFakes: An overview, IEEE J. Sel. Topics Signal Process., 14, 5, pp. 910-932, (2020)
- [2] Karras T., Aittala M., Hellsten J., Laine S., Lehtinen J., Aila T., Training generative adversarial networks with limited data, Proc. Adv. Neural Inf. Process. Syst., 33, pp. 12104-12114, (2020)
- [3] Bonettini N., Cannas E.D., Mandelli S., Bondi L., Bestagini P., Tubaro S., Video face manipulation detection through ensemble of CNNs, Proc. 25th Int. Conf. Pattern Recognit. (ICPR), pp. 5012-5019, (2021)
- [4] Ahmed S.R., Sonuc E., Ahmed M.R., Duru A.D., Analysis survey on deepfake detection and recognition with convolutional neural networks, Proc. Int. Congr. Hum.-Comput. Interact., Optim. Robotic Appl. (HORA), pp. 1-7, (2022)
- [5] Caldelli R., Galteri L., Amerini I., Del Bimbo A., Optical flow based CNN for detection of unlearnt deepfake manipulations, Pattern Recognit. Lett., 146, pp. 31-37, (2021)
- [6] Mazaheri G., Roy-Chowdhury A.K., Detection and localization of facial expression manipulations, Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV), pp. 1035-1045, (2022)
- [7] Park J., Kim Y.-G., Styleformer: Transformer based generative adversarial networks with style vector, Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 8983-8992, (2022)
- [8] Xu Z., Zhou H., Hong Z., Liu Z., Liu J., Guo Z., Han J., Liu J., Ding E., Wang J., StyleSwap: Style-based generator empowers robust face swapping, Proc. Eur. Conf. Comput. Vis., pp. 661-677, (2022)
- [9] Singh S., Sharma R., Smeaton A.F., Using GANs to synthesise minimum training data for deepfake generation
- [10] Gerstner C.R., Farid H., Detecting real-time deep-fake videos using active illumination, Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), pp. 53-60, (2022)