Facilitating the oxygen redox chemistry in O3-type layered oxide cathode material for sodium-ion batteries by Fe substitution

被引:0
|
作者
Xiong, Wei [1 ]
Liu, Zhihao [1 ]
Cheng, Wenjia [2 ]
Zheng, Jiagui [1 ]
Zou, Yi [1 ]
Chen, Xi [1 ]
Liu, Yang [3 ]
机构
[1] China Univ Petr East China, Sch Mat Sci & Engn, Qingdao 266580, Shandong, Peoples R China
[2] China Oilfield Serv Ltd, Tianjin Branch, Tianjin 300270, Peoples R China
[3] China Univ Petr East China, Coll Pipeline & Civil Engn, Qingdao 266580, Shandong, Peoples R China
来源
关键词
Sodium-ion battery; Oxygen redox chemistry; O3 layered oxide; Doping modification; Cathode material; ANIONIC REDOX; CU; ELECTRODE; P2-TYPE; PERFORMANCE; STABILITY;
D O I
10.1016/j.jechem.2024.10.058
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Facilitating anion redox chemistry is an effective strategy to increase the capacity of layered oxides for sodium-ion batteries. Nevertheless, there remains a paucity of literature pertaining to the oxygen redox chemistry of O3-type layered oxide cathode materials. This work systematically investigates the effect of Fe doping on the anionic oxygen redox chemistry and electrochemical reactions in O3-NaNi0.4Cu0.1Mn0.4Ti0.1O2. The results of the density functional theory (DFT) calculations indicate that the electrons of the O 2p occupy a higher energy level. In the ex-situ X-ray photoelectron spectrometer (XPS) of O 1s, the addition of Fe facilitates the lattice oxygen (O-n(-)) to exhibit enhanced activity at 4.45 V. The in-situ X-ray diffraction (XRD) demonstrates that the doping of Fe effectively suppresses the Y phase transition at high voltages. Furthermore, the Galvanostatic Intermittent Titration Technique (GITT) data indicate that Fe doping significantly increases the Na+ migration rate at high voltages. Consequently, the substitution of Fe can elevate the cut-off voltage to 4.45 V, thereby facilitating electron migration from O2-. The redox of O2-/O-n(-) (n < 2) contributes to the overall capacity. O3-Na(Ni0.4Cu0.1Mn0.4Ti0.1)(0.92)Fe0.08O2 provides an initial discharge specific capacity of 180.55 mA h g(-1) and 71.6% capacity retention at 0.5 C (1 C = 240 mA g(-1)). This work not only demonstrates the beneficial impact of Fe substitution for promoting the redox activity and reversibility of O2- in O3-type layered oxides, but also guarantees the structural integrity of the cathode materials at high voltages (>4.2 V). It offers a novel avenue for investigating the anionic redox reaction in O3-type layered oxides to design advanced cathode materials. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 50 条
  • [41] Regulation of Coordination Chemistry for Ultrastable Layered Oxide Cathode Materials of Sodium-Ion Batteries
    Gao, Suning
    Zhu, Zhuo
    Fang, Hengyi
    Feng, Kun
    Zhong, Jun
    Hou, Machuan
    Guo, Yihe
    Li, Fei
    Zhang, Wei
    Ma, Zifeng
    Li, Fujun
    Advanced Materials, 2024, 36 (16)
  • [42] A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries
    Junteng Jin
    Yongchang Liu
    Xuelu Pang
    Yao Wang
    Xianran Xing
    Jun Chen
    Science China Chemistry, 2021, 64 : 385 - 402
  • [43] Facile design and synthesis of Co-free layered O3-type NaNi0.2Mn0.2Fe0.6O2 as promising cathode material for sodium-ion batteries
    Feng, Jie
    Luo, Shao-hua
    Dou, YuXin
    Cong, Jun
    Liu, Xin
    Li, Pengwei
    Yan, Shengxue
    Wang, Qing
    Zhang, Yahui
    Lei, Xuefei
    Gao, Jianbo
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 914
  • [44] Cu/Mg substitution enables O3-type NaNi0.4Fe0.2Mn0.4O2 cathode material with simpler phase transition process for sodium-ion batteries
    Luo, Xuan
    Wang, Luhan
    Tian, Meng
    Tian, Yi
    Zhang, Xiao
    Zhou, Shijie
    Xie, Jun
    Hu, Linlin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1014
  • [45] A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries
    Jin, Junteng
    Liu, Yongchang
    Pang, Xuelu
    Wang, Yao
    Xing, Xianran
    Chen, Jun
    SCIENCE CHINA-CHEMISTRY, 2021, 64 (03) : 385 - 402
  • [46] A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries
    Junteng Jin
    Yongchang Liu
    Xuelu Pang
    Yao Wang
    Xianran Xing
    Jun Chen
    Science China(Chemistry), 2021, 64 (03) : 385 - 402
  • [47] A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries
    Junteng Jin
    Yongchang Liu
    Xuelu Pang
    Yao Wang
    Xianran Xing
    Jun Chen
    Science China(Chemistry), 2021, (03) : 385 - 402
  • [48] Insights into the Redox Chemistry and Structural Evolution of a P2-Type Cathode Material in Sodium-Ion Batteries
    Surendran, Ammu
    Thottungal, Aswathi
    Enale, Harsha
    Dixon, Ditty
    Sarapulova, Angelina
    Knapp, Michael
    Missyul, Alexander
    Bhaskar, Aiswarya
    CHEMISTRY OF MATERIALS, 2025, 37 (04) : 1588 - 1599
  • [49] High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode
    Deng, Jianqiu
    Luo, Wen-Bin
    Lu, Xiao
    Yao, Qingrong
    Wang, Zhongmin
    Liu, Hua-Kun
    Zhou, Huaiying
    Dou, Shi-Xue
    ADVANCED ENERGY MATERIALS, 2018, 8 (05)
  • [50] Research progress in O3-type phase Fe/Mn/Cu-based layered cathode materials for sodium ion batteries
    Liu, Yalan
    Wang, Dong
    Li, Haoyu
    Li, Ping
    Sun, Yan
    Liu, Yang
    Liu, Yuxia
    Zhong, Benhe
    Wu, Zhenguo
    Guo, Xiaodong
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (08) : 3869 - 3888