Ruelle zeta functions for finite digraphs

被引:0
作者
Morita H. [1 ]
机构
[1] Muroran Institute of Technology, 27-1 Mizumoto, Muroran
关键词
Determinant expressions; Digraphs; Dynamical systems; Graphs; Zeta functions;
D O I
10.1016/j.laa.2020.06.011
中图分类号
学科分类号
摘要
Three types of expressions for combinatorial zeta functions are considered. We investigate conditions for reformulating the exponential expression to the Euler product expression, and the Euler product expression to the determinant expression of Hashimoto type. The existence of the determinant expression of Hashimoto type enables one to unify those zetas within a single framework, that is, the Ruelle zeta functions for quasi-finite dynamical systems constructed on finite digraphs, which we call the combinatorial zeta functions. © 2020 Elsevier Inc.
引用
收藏
页码:329 / 358
页数:29
相关论文
共 32 条
  • [1] Artin M., Mazur B., On periodic points, Ann. Math., 81, pp. 82-99, (1965)
  • [2] Bartholdi L., Counting paths in graphs, Enseign. Math., 45, pp. 83-131, (1999)
  • [3] Bass H., The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math., 3, pp. 83-131, (1992)
  • [4] Bowen R., Lanford O., Zeta functions of restrictions of the shift transformation, Proc. Symp. Pure Math., 14, pp. 43-50, (1970)
  • [5] Choe Y., Kwak J.H., Park Y.S., Sato I., Bartholdi zeta and L-functions of weight digraphs, their coverings and products, Adv. Math., 213, pp. 865-886, (2007)
  • [6] Emms D., Hancock E., Severini S., Wilson R., A matrix representation of graphs and its spectrum as a graph invariant, Electron. J. Comb., 13, (2006)
  • [7] Emms D., Hancock E., Severini S., Wilson R., Coined quantum walks lift the cospectrality of graphs and trees, Pattern Recognit., 42, pp. 1988-2002, (2006)
  • [8] Foata D., Zeilberger D., A combinatorial proof of Bass's evaluations of the Ihara-Selberg zeta function for graphs, Trans. Am. Math. Soc., 355, pp. 2257-2274, (1999)
  • [9] Hashimoto K.-I., Zeta Functions of Finite Graphs and Representation of p-Adic Groups, Adv. Stud. Pure. Math., 15, pp. 211-280, (1989)
  • [10] Hashimoto K.-I., On the zeta- and L-functions of finite graphs, Internat. J. Math., 1, pp. 381-396, (1990)