Fault Diagnosis of Lithium-Ion Batteries Based on the Historical Trajectory of Remaining Discharge Capacity

被引:0
|
作者
Jiang, Jiuchun [1 ]
Qu, Bingrui [2 ]
Liu, Shuaibang [1 ]
Yan, Huan [2 ]
Zhang, Zhen [2 ]
Chang, Chun [2 ]
机构
[1] Beijing Inst Technol, Shenzhen Automot Res Inst, Shenzhen 518118, Peoples R China
[2] Hubei Univ Technol, Hubei Key Lab High Efficiency Utilizat Solar Energ, Wuhan 430000, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 23期
关键词
lithium-ion battery; fault diagnosis; medium and long time scale; historical trajectory;
D O I
10.3390/app142310895
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, the number of safety accidents in new-energy electric vehicles due to lithium-ion battery failures has been increasing, and the lithium-ion battery fault diagnosis technology is particularly important to ensure the safe operation of electric vehicles. This paper proposes a method for lithium-ion battery fault diagnosis based on the historical trajectory of lithium-ion battery remaining discharge capacity in medium and long time scales. The method first utilizes the sparrow search algorithm (SSA) to identify the parameters of the second-order equivalent circuit model of the lithium-ion battery, and then estimates the state of charge (SOC) of the lithium-ion battery using the extended Kalman filter (EKF). The remaining discharge capacity is estimated according to the SOC, and finally the feature vectors are used to diagnose the faults using box plots on the medium and long time scales. Experimental results verify that the root mean squared error (RSME) and mean absolute error (MAE) of the proposed SOC estimation method are 0.0049 and 0.0034, respectively. This method can accurately identify the faulty single cell in a battery pack with low-capacity single cells and promptly detect any abnormalities in the single cell when a micro-short circuit fault occurs.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Fault diagnosis of lithium-ion batteries based on voltage dip behavior
    Chang, Chun
    Zhang, Zhen
    Wang, Zile
    Tian, Aina
    Jiang, Yan
    Wu, Tiezhou
    Jiang, Jiuchun
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (07) : 1523 - 1535
  • [2] Model-Based Remaining Discharge Energy Estimation of Lithium-ion Batteries
    Zhang, Xu
    Wang, Yujie
    Chen, Zonghai
    2017 3RD INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2017, : 510 - 513
  • [3] State of health estimation of lithium-ion batteries based on remaining area capacity
    Lin, Zhicheng
    Hu, Houpeng
    Liu, Wei
    Zhang, Zixia
    Zhang, Ya
    Geng, Nankun
    Liao, Qiangqiang
    JOURNAL OF ENERGY STORAGE, 2023, 63
  • [4] Fault mitigation and diagnosis for lithium-ion batteries: a review
    Rao, K. Dhananjay
    Lakshmi Pujitha, N. Naga
    Rao Ranga, MadhuSudana
    Manaswi, Ch.
    Dawn, Subhojit
    Ustun, Taha Selim
    Kalam, Akhtar
    Frontiers in Energy Research, 2025, 13
  • [5] Review of Abnormality Detection and Fault Diagnosis Methods for Lithium-Ion Batteries
    Xinhua Liu
    Mingyue Wang
    Rui Cao
    Meng Lyu
    Cheng Zhang
    Shen Li
    Bin Guo
    Lisheng Zhang
    Zhengjie Zhang
    Xinlei Gao
    Hanchao Cheng
    Bin Ma
    Shichun Yang
    Automotive Innovation, 2023, 6 : 256 - 267
  • [6] Review of Abnormality Detection and Fault Diagnosis Methods for Lithium-Ion Batteries
    Liu, Xinhua
    Wang, Mingyue
    Cao, Rui
    Lyu, Meng
    Zhang, Cheng
    Li, Shen
    Guo, Bin
    Zhang, Lisheng
    Zhang, Zhengjie
    Gao, Xinlei
    Cheng, Hanchao
    Ma, Bin
    Yang, Shichun
    AUTOMOTIVE INNOVATION, 2023, 6 (02) : 256 - 267
  • [7] Estimation of remaining capacity of lithium-ion batteries based on X-ray computed tomography
    Hou, Junwei
    Wu, Weichuang
    Li, Lifu
    Tong, Xin
    Hu, Renjun
    Wu, Weibin
    Cai, Weizhi
    Wang, Hailin
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [8] Model-Based Stochastic Fault Detection and Diagnosis of Lithium-Ion Batteries
    Son, Jeongeun
    Du, Yuncheng
    PROCESSES, 2019, 7 (01)
  • [9] A Comprehensive Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles
    Cong, Xinwei
    Zhang, Caiping
    Jiang, Jiuchun
    Zhang, Weige
    Jiang, Yan
    Zhang, Linjing
    ENERGIES, 2021, 14 (05)
  • [10] Recent advances in model-based fault diagnosis for lithium-ion batteries: A comprehensive review
    Xu, Yiming
    Ge, Xiaohua
    Guo, Ruohan
    Shen, Weixiang
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 207