A conversion tool for translating Python']Python-based machine learning models to structured text codes

被引:0
作者
Campos, Yasmin Adriane de Paula [1 ]
Pereira, Paulo Haron da Silva [2 ]
Duarte, Robson Aparecdo [3 ]
Perez, Jose Manuel Gonzalez Tubio [4 ]
Pessin, Gustavo [4 ,5 ]
Pinto, Thomas Vargas Barsante [3 ,4 ,6 ]
机构
[1] Univ Fed Ouro Preto, Dept Engn Controle & Automacao, Ouro Preto, Brazil
[2] Vale Base Met, Canaa Dos Carajas, Brazil
[3] Vale SA, Canaa Dos Carajas, Brazil
[4] Inst Tecnol Vale, Lab Robot Controle & Instrumentacao, Ouro Preto, Brazil
[5] Univ Fed Ouro Preto, Dept Computacao, Ouro Preto, Brazil
[6] Univ Fed Minas Gerais, Dept Engn Elect, Belo Horizonte, Brazil
关键词
Machine learning; !text type='Python']Python[!/text; Structured text; Industry; PLC;
D O I
10.1016/j.softx.2024.102005
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a converter software program that automatically translates Python-based machine learning algorithms into Structured Text codes. This tool empowers engineers to efficiently generate machine learning models in a programming language widely used in industrial controllers. It supports the conversion of decision tree and multilayer perceptron models built using scikit-learn library. Moreover, the generated Structure Text code is compatible with ABB's Industrial IT 800xA DCS syntax. A practical example demonstrates the effectiveness of this converter software program and its potential to enhance the integration of machine learning models into industrial automation systems.
引用
收藏
页数:6
相关论文
共 14 条
  • [1] Azarmipour M, 2019, IEEE IND ELEC, P5513, DOI 10.1109/IECON.2019.8927026
  • [2] On the Implementation of Industrial Automation Systems Based on PLC
    Basile, Francesco
    Chiacchio, Pasquale
    Gerbasio, Diego
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2013, 10 (04) : 990 - 1003
  • [3] Boudribila Abderrahmane, 2023, 2023 9th International Conference on Control, Decision and Information Technologies (CoDIT), P650, DOI 10.1109/CoDIT58514.2023.10284185
  • [4] Machine Learning for Fluid Mechanics
    Brunton, Steven L.
    Noack, Bernd R.
    Koumoutsakos, Petros
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, VOL 52, 2020, 52 : 477 - 508
  • [5] Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges
    Dalzochio, Jovani
    Kunst, Rafael
    Pignaton, Edison
    Binotto, Alecio
    Sanyal, Srijnan
    Favilla, Jose
    Barbosa, Jorge
    [J]. COMPUTERS IN INDUSTRY, 2020, 123
  • [6] A critical review of artificial intelligence in mineral concentration
    Gomez-Flores, Allan
    Ilyas, Sadia
    Heyes, Graeme W.
    Kim, Hyunjung
    [J]. MINERALS ENGINEERING, 2022, 189
  • [7] Ready or Not, AI Comes- An Interview Study of Organizational AI Readiness Factors
    Joehnk, Jan
    Weissert, Malte
    Wyrtki, Katrin
    [J]. BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2021, 63 (01) : 5 - 20
  • [8] Using Structured Text Source Code Metrics and Artificial Neural Networks to Predict Change Proneness at Code Tab and Program Organization Level
    Kumar, Lov
    Sureka, Ashish
    [J]. PROCEEDINGS OF THE 10TH INNOVATIONS IN SOFTWARE ENGINEERING CONFERENCE, 2017, : 172 - 180
  • [9] Langmann R, 2016, INT CONF REMOT ENGIN, P10, DOI 10.1109/REV.2016.7444433
  • [10] Machine learning applications in minerals processing: A review
    McCoy, J. T.
    Auret, L.
    [J]. MINERALS ENGINEERING, 2019, 132 : 95 - 109