Well-Posedness and Convergence Results for History-Dependent Inclusions

被引:0
|
作者
Sofonea, Mircea [1 ]
Tarzia, Domingo A. [2 ,3 ]
机构
[1] Univ Perpignan, Lab Math & Phys, Via Domitia 52 Ave Paul Alduy, F-66860 Perpignan, France
[2] FCE Univ Austral Paraguay, Dept Matemat, Rosario, Argentina
[3] Consejo Nacl Invest Cient & Tecn, S2000EZP, Rosario, Argentina
关键词
Convergence criterion; history-dependent inclusion; locking effect; penalty method; Tykhonov triple; well-posedness result; viscoelastic constitutive law; 45JN05; HEMIVARIATIONAL INEQUALITIES; VARIATIONAL-INEQUALITIES;
D O I
10.1080/01630563.2024.2423246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an inclusion in a real Hilbert space governed by a time-dependent set of constraints and a history-dependent operator. We introduce the concept of T- well-posedness for this inclusion, associated to a given Tykhonov triple T. Next, we provide a T-well-posedness result that we use in order to deduce the continuous dependence of the solution with respect to the data. Then, we state and prove a convergence criterion to the solution of the inclusion that we use to prove a convergence result for an associate penalty problem. Moreover, we show that this criterion allows us to construct a Tykhonov triple T-which give rise to an optimal well-posedness concept for the corresponding inclusion. Finally, we use these abstract results in the study of a nonlinear viscoelastic constitutive law with long memory term and unilateral constraints.
引用
收藏
页码:45 / 67
页数:23
相关论文
共 50 条
  • [41] A Class of History-Dependent Inclusions with Applications to Contact Problems
    Migorski, Stanislaw
    Ochal, Anna
    Sofonea, Mircea
    OPTIMIZATION AND CONTROL TECHNIQUES AND APPLICATIONS, 2014, 86 : 45 - 74
  • [42] Well-Posedness Results for the Continuum Spectrum Pulse Equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    MATHEMATICS, 2019, 7 (11)
  • [43] Some equivalence results for well-posedness of hemivariational inequalities
    Yi-bin Xiao
    Xinmin Yang
    Nan-jing Huang
    Journal of Global Optimization, 2015, 61 : 789 - 802
  • [44] Sharp well-posedness and ill-posedness results for the inhomogeneous NLS equation
    Campos, Luccas
    Correia, Simao
    Farah, Luiz Gustavo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 85
  • [45] WELL-POSEDNESS AND ILL-POSEDNESS RESULTS FOR THE NOVIKOV-VESELOV EQUATION
    Angelopoulos, Yannis
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (03) : 727 - 760
  • [46] Global Well-Posedness and Convergence Results to a 3D Regularized Boussinesq System in Sobolev Spaces
    Selmi, Ridha
    Almutairi, Shahah
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [47] On Well-Posedness and Hausdorff Convergence of Solution Sets of Vector Optimization Problems
    Laura J. Kettner
    Sien Deng
    Journal of Optimization Theory and Applications, 2012, 153 : 619 - 632
  • [48] NONLOCAL CONTROL IN THE CONDUCTION COEFFICIENTS: WELL-POSEDNESS AND CONVERGENCE TO THE LOCAL LIMIT
    Evgrafov, Anton
    Bellido, Jose C.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (04) : 1769 - 1794
  • [49] On Well-Posedness and Hausdorff Convergence of Solution Sets of Vector Optimization Problems
    Kettner, Laura J.
    Deng, Sien
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 153 (03) : 619 - 632
  • [50] WELL-POSEDNESS AND CONVERGENCE OF A FINITE VOLUME METHOD FOR CONSERVATION LAWS ON NETWORKS
    FJORDHOLM, U. L. R. I. K. S.
    MUSCH, M. A. R. K. U. S.
    RISEBRO, N. I. L. S. H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 606 - 630