Poly(ionic liquid) functionalization: A general strategy for strong, tough, ionic conductive, and multifunctional polysaccharide hydrogels toward sensors

被引:16
作者
Yao, Xue [1 ]
Zhang, Sufeng [1 ]
Wei, Ning [1 ]
Qian, Liwei [1 ]
Ding, Hao [1 ]
Liu, Jingtao [1 ]
Song, Wenqi [2 ]
Coseri, Sergiu [3 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Bioresources Chem & Mat Engn, Shaanxi Prov Key Lab Papermaking Technol & Special, Key Lab Paper Based Funct Mat China Natl Light Ind, Xian, Peoples R China
[2] Xijing Univ, Technol Inst Mat & Energy Sci TIMES, Sch Elect Informat, Xian Key Lab Adv Photoelect Mat & Energy Convers D, Xian, Peoples R China
[3] Romanian Acad, Petru Poni Inst Macromol Chem, Iasi, Romania
来源
SUSMAT | 2024年 / 4卷 / 06期
基金
中国国家自然科学基金;
关键词
bioresources; cellulose; conductive hydrogels; multiple functions; poly(ionic liquids); sensors; FATIGUE;
D O I
10.1002/sus2.249
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ionic conductive hydrogels (ICHs) prepared from natural bioresources are promising candidates for constructing flexible electronics for both commercialization and environmental sustainability due to their intrinsic characteristics. However, simultaneous realization of high stiffness, toughness, conductivity, and multifunctionality while ensuring processing simplicity is extremely challenging. Here, a poly(ionic liquid) (PIL)-macromolecule functionalization strategy within a NaOH/urea system is proposed to construct high-performance and versatile polysaccharide-based ICHs (e.g., cellulosic ICHs). In this strategy, the elaborately designed "soft" (PIL chains) and "hard" (cellulose backbone) structures as well as the dynamic covalent and noncovalent bonds of the cross-linked networks endow the hydrogel with high mechanical strength (9.46 +/- 0.23 MPa compressive modulus), exceptional stretchability (214.3%), and toughness (3.64 +/- 0.12 MJ m-3). Ingeniously, due to the inherent conductivity, design flexibility, and functional compatibility of the PILs, the hydrogels exhibit high conductivity (6.54 +/- 0.17 mS cm-1), self-healing ability (94.5% +/- 2.0% efficiency), antibacterial properties, freezing resistance, water retention, and recyclability. Interestingly, this strategy is extended to fabricate diverse hydrogels from various polysaccharides, including agar, alginate, hyaluronic acid, and guar gum. In addition, multimodal sensing (strain, temperature, and humidity) is realized based on the stimulus-responsive characteristics of the hydrogels. This strategy opens new perspectives for the design of biomass-based hydrogels and beyond.
引用
收藏
页数:20
相关论文
共 64 条
[1]   Smart battery-free and wireless bioelectronic platform based on a nature-skin-derived organohydrogel for chronic wound diagnosis, assessment, and accelerated healing [J].
Bai, Zhongxue ;
Wang, Xuechuan ;
Huang, Mengchen ;
Feng, Yuyu ;
Sun, Siwei ;
Zheng, Manhui ;
Zou, Xiaoliang ;
Xie, Long ;
Wang, Xiao ;
Hao, Dongyu ;
Yue, Ouyang ;
Chen, Yining ;
Liu, Xinhua .
NANO ENERGY, 2023, 118
[2]   Mechanically Robust and Transparent Organohydrogel-Based E-Skin Nanoengineered from Natural Skin [J].
Bai, Zhongxue ;
Wang, Xuechuan ;
Zheng, Manhui ;
Yue, Ouyang ;
Huang, Mengchen ;
Zou, Xiaoliang ;
Cui, Boqiang ;
Xie, Long ;
Dong, Shuyin ;
Shang, Jiaojiao ;
Gong, Guidong ;
Blocki, Anna M. ;
Guo, Junling ;
Liu, Xinhua .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (15)
[3]   Rapid fabrication of physically robust hydrogels [J].
Bao, Bingkun ;
Zeng, Qingmei ;
Li, Kai ;
Wen, Jianfeng ;
Zhang, Yiqing ;
Zheng, Yongjun ;
Zhou, Renjie ;
Shi, Chutong ;
Chen, Ting ;
Xiao, Chaonan ;
Chen, Baihang ;
Wang, Tao ;
Yu, Kang ;
Sun, Yuan ;
Lin, Qiuning ;
He, Yong ;
Tu, Shantung ;
Zhu, Linyong .
NATURE MATERIALS, 2023, 22 (10) :1253-+
[4]   Photochromic Nucleosides and Oligonucleotides [J].
Bargstedt, Joern ;
Reinschmidt, Martin ;
Tydecks, Leon ;
Kolmar, Theresa ;
Hendrich, Christoph M. ;
Jaeschke, Andres .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (09)
[5]   Fluorescent Probes for Sugar Detection [J].
Bruen, Danielle ;
Delaney, Colm ;
Diamond, Dermot ;
Florea, Larisa .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (44) :38431-38437
[6]   Bio-Inspired Multiscale Design for Strong and Tough Biological Ionogels [J].
Cao, Kaiyue ;
Zhu, Ying ;
Zheng, Zihao ;
Cheng, Wanke ;
Zi, Yifei ;
Zeng, Suqing ;
Zhao, Dawei ;
Yu, Haipeng .
ADVANCED SCIENCE, 2023, 10 (13)
[7]   Dynamic chemistry in ionic liquid-based conductor [J].
Chen, Zhiwu ;
Gui, Qinyuan ;
Wang, Yapei .
GREEN CHEMICAL ENGINEERING, 2021, 2 (04) :346-358
[8]   Facile preparation of cellulose hydrogel with Achilles tendon-like super strength through aligning hierarchical fibrous structure [J].
Guo, Yun Zhou ;
Nakajima, Tasuku ;
Mredha, Md Tariful Islam ;
Guo, Hong Lei ;
Cui, Kunpeng ;
Zheng, Yong ;
Cui, Wei ;
Kurokawa, Takayuki ;
Gong, Jian Ping .
CHEMICAL ENGINEERING JOURNAL, 2022, 428
[9]  
Han Z., 2022, SCI ADV, V8, P1
[10]   Conductive Hydrogel for Flexible Bioelectronic Device: Current Progress and Future Perspective [J].
He, Qinhong ;
Cheng, Yan ;
Deng, Yijia ;
Wen, Feng ;
Lai, Yuekun ;
Li, Huaqiong .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (01)