Holistic Quality Monitoring Based on Machine Learning Methods How Data-driven Approaches Could Revolutionize Process Reliability in the Contact Processing Industry

被引:0
|
作者
Giang Nguyen H. [1 ]
Scheck A. [1 ]
Hofmann B. [1 ]
Meiners M. [2 ]
Neubauer S. [2 ]
Schäfer A. [2 ]
Franke J. [1 ]
机构
[1] Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik, Fürther Str. 246 b, Nürnberg
[2] Schäfer Werkzeug- und Sondermaschinenbau GmbH, Nürnberg
来源
关键词
Automatische optische Inspektion; Crimpkraftkurvenüberwachung; Crimpverbindung; Deep Learning; Kabelsatz; Kontakt-; Leitungsverarbeitung; Maschinelles Lernen; Qualitätsüberwachung; verarbeitung;
D O I
10.1515/zwf-2023-1045
中图分类号
学科分类号
摘要
Contact and wire processing is characterized by a high component variety, short cycle times, and increasing requirements regarding quality, documentation, and traceability. To fulfil these requirements, this paper presents a holistic approach based on machine learning for quality monitoring. The approach is based on an automatic optical inspection with 360-degree views of stripped and contacted wires. In addition, quality monitoring is realized based on the intelligent analysis of crimp force curves. The evaluation of image data and time series enables failure classification and anomaly detection at the crimping machine without sacrificing cycle time. For the visualization and worker acceptance of the quality parameters and predictions of the deep learning models, methods for explainability are integrated. © 2023 Walter de Gruyter GmbH, Berlin/Boston, Germany.
引用
收藏
页码:198 / 203
页数:5
相关论文
共 50 条
  • [31] How Can We Improve Data Quality for Machine Learning? A Visual Analytics System using Data and Process-driven Strategies
    Hong, Hyein
    Yoo, Sangbong
    Jin, Yejin
    Jang, Yun
    2023 IEEE 16TH PACIFIC VISUALIZATION SYMPOSIUM, PACIFICVIS, 2023, : 112 - 121
  • [32] A data-driven air quality assessment method based on unsupervised machine learning and median statistical analysis: The case of China
    Wang, Xiaoxia
    Wang, Luqi
    Liu, Yuanyuan
    Hu, Sangen
    Liu, Xuezhen
    Dong, Zhongzhen
    JOURNAL OF CLEANER PRODUCTION, 2021, 328
  • [33] Adaptive LII-RMPLS based data-driven process monitoring scheme for quality-relevant fault detection
    Feng, Xiaowei
    Kong, Xiangyu
    Du, Boyang
    Luo, Jiayu
    JOURNAL OF CONTROL AND DECISION, 2022, 9 (04) : 477 - 488
  • [34] Model-based impending lithium battery terminal voltage collapse detection via data-driven and machine learning approaches
    Tameemi, Ali Qahtan
    Kanesan, Jeevan
    Khairuddin, Anis Salwa Mohd
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [35] A Data-Driven Analytical Framework for ESG-based Stock Investment Analytics using Machine Learning and Natural Language Processing
    Cao, Elliot
    Sun, Yu
    PROCEEDINGS OF 2023 THE 12TH INTERNATIONAL CONFERENCE ON NETWORKS, COMMUNICATION AND COMPUTING, ICNCC 2023, 2023, : 225 - 232
  • [36] Data-Driven Shear Strength Prediction of FRP-Reinforced Concrete Beams without Stirrups Based on Machine Learning Methods
    Yang, Yuanzhang
    Liu, Gaoyang
    BUILDINGS, 2023, 13 (02)
  • [37] A machine learning-based data-driven approach to Alzheimer's disease diagnosis using statistical and harmony search methods
    Bolourchi, Pouya
    Gholami, Mohammadreza
    Journal of Intelligent and Fuzzy Systems, 2024, 46 (03): : 6299 - 6312
  • [38] A machine learning-based data-driven approach to Alzheimer's disease diagnosis using statistical and harmony search methods
    Bolourchi, Pouya
    Gholami, Mohammadreza
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (03) : 6299 - 6312
  • [39] Comprehensive assessment of failure mode and shear capacity of reinforced concrete circular columns based on data-driven machine learning methods
    Wen, Yue
    Zhou, Shiqiao
    Cai, Gaochuang
    He, Zhili
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 150
  • [40] Data-driven approaches to hard-to-treat tuberculosis disease: a machine-learning based model for automated recommendation of individualized treatment
    Verboven, Lennert
    Van Rie, Annelies
    Tu, Trang
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2025, 152