Holistic Quality Monitoring Based on Machine Learning Methods How Data-driven Approaches Could Revolutionize Process Reliability in the Contact Processing Industry

被引:0
|
作者
Giang Nguyen H. [1 ]
Scheck A. [1 ]
Hofmann B. [1 ]
Meiners M. [2 ]
Neubauer S. [2 ]
Schäfer A. [2 ]
Franke J. [1 ]
机构
[1] Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik, Fürther Str. 246 b, Nürnberg
[2] Schäfer Werkzeug- und Sondermaschinenbau GmbH, Nürnberg
来源
关键词
Automatische optische Inspektion; Crimpkraftkurvenüberwachung; Crimpverbindung; Deep Learning; Kabelsatz; Kontakt-; Leitungsverarbeitung; Maschinelles Lernen; Qualitätsüberwachung; verarbeitung;
D O I
10.1515/zwf-2023-1045
中图分类号
学科分类号
摘要
Contact and wire processing is characterized by a high component variety, short cycle times, and increasing requirements regarding quality, documentation, and traceability. To fulfil these requirements, this paper presents a holistic approach based on machine learning for quality monitoring. The approach is based on an automatic optical inspection with 360-degree views of stripped and contacted wires. In addition, quality monitoring is realized based on the intelligent analysis of crimp force curves. The evaluation of image data and time series enables failure classification and anomaly detection at the crimping machine without sacrificing cycle time. For the visualization and worker acceptance of the quality parameters and predictions of the deep learning models, methods for explainability are integrated. © 2023 Walter de Gruyter GmbH, Berlin/Boston, Germany.
引用
收藏
页码:198 / 203
页数:5
相关论文
共 50 条
  • [1] A Review on Data-Driven Quality Prediction in the Production Process with Machine Learning for Industry 4.0
    Md, Abdul Quadir
    Jha, Keshav
    Haneef, Sabireen
    Sivaraman, Arun Kumar
    Tee, Kong Fah
    PROCESSES, 2022, 10 (10)
  • [2] Data-driven monitoring of the gearbox using multifractal analysis and machine learning methods
    Puchalski, Andrzej
    Komorska, Iwona
    III INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN ENGINEERING SCIENCE (CMES 18), 2019, 252
  • [3] Comparative Study Based on a Reduced Dynamic Data-driven Methods of Machine Learning
    Said, Maroua
    Taouali, Okba
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND EMERGENT TECHNOLOGIES, ICASET 2024, 2024,
  • [4] Simple machine learning allied with data-driven methods for monitoring tool wear in machining processes
    de Farias, Adalto
    de Almeida, Sergio Luiz Rabelo
    Delijaicov, Sergio
    Seriacopi, Vanessa
    Bordinassi, Ed Claudio
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 109 (9-12): : 2491 - 2501
  • [5] Simple machine learning allied with data-driven methods for monitoring tool wear in machining processes
    Adalto de Farias
    Sérgio Luiz Rabelo de Almeida
    Sergio Delijaicov
    Vanessa Seriacopi
    Ed Claudio Bordinassi
    The International Journal of Advanced Manufacturing Technology, 2020, 109 : 2491 - 2501
  • [6] Data-Driven Machine Learning Calibration Propagation in A Hybrid Sensor Network for Air Quality Monitoring
    Vajs, Ivan
    Drajic, Dejan
    Cica, Zoran
    SENSORS, 2023, 23 (05)
  • [7] On the use of machine learning methods to predict component reliability from data-driven industrial case studies
    Emanuel F. Alsina
    Manuel Chica
    Krzysztof Trawiński
    Alberto Regattieri
    The International Journal of Advanced Manufacturing Technology, 2018, 94 : 2419 - 2433
  • [8] On the use of machine learning methods to predict component reliability from data-driven industrial case studies
    Alsina, Emanuel F.
    Chica, Manuel
    Trawinski, Krzysztof
    Regattieri, Alberto
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 94 (5-8): : 2419 - 2433
  • [9] Seismic response prediction of a damped structure based on data-driven machine learning methods
    Zhang, Tianyang
    Xu, Weizhi
    Wang, Shuguang
    Du, Dongshen
    Tang, Jun
    ENGINEERING STRUCTURES, 2024, 301
  • [10] Toward Data-Driven Structural Health Monitoring: Application of Machine Learning and Signal Processing to Damage Detection
    Ying, Yujie
    Garrett, James H., Jr.
    Oppenheim, Irving J.
    Soibelman, Lucio
    Harley, Joel B.
    Shi, Jun
    Jin, Yuanwei
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2013, 27 (06) : 667 - 680