Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters

被引:14
作者
Department of Mathematics and Physics, Guilin University of Technology, Guilin 541004, China [1 ]
不详 [2 ]
机构
[1] Department of Mathematics and Physics, Guilin University of Technology
[2] School of Mathematics and Statistics, Wuhan University
来源
Chin. Phys. | 2007年 / 5卷 / 1246-1251期
关键词
Chaotic system; Generalized projective synchronization; Hyperchaotic system; Parameter identification;
D O I
10.1088/1009-1963/16/5/013
中图分类号
学科分类号
摘要
In this paper is investigated the generalized projective synchronization of a class of chaotic (or hyperchaotic) systems, in which certain parameters can be separated from uncertain parameters. Based on the adaptive technique, the globally generalized projective synchronization of two identical chaotic (hyperchaotic) systems is achieved by designing a novel nonlinear controller. Furthermore, the parameter identification is realized simultaneously. A sufficient condition for the globally projective synchronization is obtained. Finally, by taking the hyperchaotic Lü system as example, some numerical simulations are provided to demonstrate the effectiveness and feasibility of the proposed technique. © 2007 Chin. Phys. Soc. and IOP Publishing Ltd.
引用
收藏
页码:1246 / 1251
页数:5
相关论文
共 26 条
[1]  
Lorenz E.N., J. Atmos. Sci., 20, 2, (1963)
[2]  
Chen G.R., Ueta T., Int. J. Bifur. Chaos, 9, 7, (1999)
[3]  
Lu J.H., Chen G.R., Int. J. Bifur. Chaos, 12, 3, (2002)
[4]  
Lu J.H., Chen G.R., Cheng D.Z., Celikovsky S., Int. J. Bifur. Chaos, 12, 12, (2002)
[5]  
Li Y., Tang S.W.K., Chen G.R., Int. J. Bifur. Chaos, 15, 10, (2005)
[6]  
Chen A.M., Lu J.A., Lii J.H., Yu S.M., Phys., 364, (2006)
[7]  
Pecora L.M., Carroll T.L., Phys. Rev. Lett., 64, 8, (1990)
[8]  
Li D.M., Lu J.A., Wu X.Q., Chaos, Solitons Fractals, 23, 1, (2005)
[9]  
Lu J.A., Wu X.Q., Lu J.H., Phys. Lett., 305, 6, (2002)
[10]  
Lu J.A., Wu X.Q., Han X.P., Lu J.H., Phys. Lett., 329, 4-5, (2004)