Physics-Informed Neural Network for modeling and predicting temperature fluctuations in proton exchange membrane electrolysis
被引:0
|
作者:
Zerrougui, Islam
论文数: 0引用数: 0
h-index: 0
机构:
Univ Marie & Louis Pasteur, Inst FEMTO ST, UTBM, CNRS, F-9000 Belfort, FranceUniv Marie & Louis Pasteur, Inst FEMTO ST, UTBM, CNRS, F-9000 Belfort, France
Zerrougui, Islam
[1
]
Li, Zhongliang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Marie & Louis Pasteur, Inst FEMTO ST, UTBM, CNRS, F-9000 Belfort, FranceUniv Marie & Louis Pasteur, Inst FEMTO ST, UTBM, CNRS, F-9000 Belfort, France
Li, Zhongliang
[1
]
Hissel, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Marie & Louis Pasteur, Inst FEMTO ST, UTBM, CNRS, F-9000 Belfort, France
Inst Univ France IUF, Paris, FranceUniv Marie & Louis Pasteur, Inst FEMTO ST, UTBM, CNRS, F-9000 Belfort, France
Hissel, Daniel
[1
,2
]
机构:
[1] Univ Marie & Louis Pasteur, Inst FEMTO ST, UTBM, CNRS, F-9000 Belfort, France
Proton Exchange Membrane (PEM) electrolysis stands as a cornerstone technology in the clean energy sector, driving the production of hydrogen and oxygen from water. A critical aspect of ensuring the efficiency and safety of this process lies in the precise monitoring and control of temperature at the electrolysis outlet. However, accurately characterizing temperature changes within the PEM electrolysis system can be challenging due to the fluctuation of renewable energies. This study introduces an approach integrating data with fundamental physics principles known as Physics-Informed Neural Networks (PINNs). This method solves differential equations and estimates the unknown parameters governing the temperature dynamics within the PEM electrolysis system. We consider two distinct scenarios: a zero-dimensional model and a onedimensional model. The results demonstrate the PINN's proficiency in accurately identifying the parameters and solving for temperature fluctuations within the system with different input conditions. Furthermore, we compare the PINN with the Long Short-Term Memory (LSTM) method to predict the outlet temperature of the electrolysis. The PINN outperformed the LSTM method, highlighting its reliability and precision, achieving a Mean Squared Error (MSE) of 0.1596 compared to 1.2132 for LSTM models. The proposed method shows a high performance in dealing with sensor noises and avoids overfitting problems. This synergy of physics knowledge and data-driven learning opens new pathways towards real-time digital twins, enhanced predictive control, and improved reliability for PEM electrolysis and other complex, data-scarce energy systems.
机构:
Penn State Univ, Dept Nucl Engn, 205 Hallowell Bldg, University Pk, PA 16802 USAPenn State Univ, Dept Nucl Engn, 205 Hallowell Bldg, University Pk, PA 16802 USA
Leite, Victor Coppo
Merzari, Elia
论文数: 0引用数: 0
h-index: 0
机构:
Idaho Natl Lab, Nucl Sci & Technol Div, 955 MK Simpson Blvd, Idaho Falls, ID 83415 USAPenn State Univ, Dept Nucl Engn, 205 Hallowell Bldg, University Pk, PA 16802 USA
Merzari, Elia
Novak, April
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Nucl Plasma & Radiol Engn, Champaign, IL 61801 USAPenn State Univ, Dept Nucl Engn, 205 Hallowell Bldg, University Pk, PA 16802 USA
Novak, April
Ponciroli, Roberto
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Nucl Engn, 205 Hallowell Bldg, University Pk, PA 16802 USA
Argonne Natl Lab, Nucl Sci & Engn Div, 9700 South Cass Ave, Lemont, IL 60439 USAPenn State Univ, Dept Nucl Engn, 205 Hallowell Bldg, University Pk, PA 16802 USA
Ponciroli, Roberto
Ibarra, Lander
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Nucl Engn, 205 Hallowell Bldg, University Pk, PA 16802 USAPenn State Univ, Dept Nucl Engn, 205 Hallowell Bldg, University Pk, PA 16802 USA
机构:
Brown Univ, Div Appl Math, Providence, RI 02906 USAIndian Inst Technol Kanpur, Dept Aerosp Engn, Kanpur 208016, Uttar Pradesh, India
Nath, Kamaljyoti
Karniadakis, George Em
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Div Appl Math, Providence, RI 02906 USA
Brown Univ, Sch Engn, Providence, RI 02906 USAIndian Inst Technol Kanpur, Dept Aerosp Engn, Kanpur 208016, Uttar Pradesh, India
机构:
Beijing Normal Univ Zhuhai, Fac Arts & Sci, Dept Geog Sci, Zhuhai 519087, Peoples R ChinaBeijing Normal Univ Zhuhai, Fac Arts & Sci, Dept Geog Sci, Zhuhai 519087, Peoples R China
Xie, Xiaoting
Yan, Hengnian
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Environm & Resource Sci, Zhejiang Prov Key Lab Agr Resources & Environm, Hangzhou 310058, Peoples R ChinaBeijing Normal Univ Zhuhai, Fac Arts & Sci, Dept Geog Sci, Zhuhai 519087, Peoples R China
Yan, Hengnian
Lu, Yili
论文数: 0引用数: 0
h-index: 0
机构:
China Agr Univ, Coll Land Sci & Technol, Beijing 100193, Peoples R ChinaBeijing Normal Univ Zhuhai, Fac Arts & Sci, Dept Geog Sci, Zhuhai 519087, Peoples R China
Lu, Yili
Zeng, Lingzao
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Environm & Resource Sci, Zhejiang Prov Key Lab Agr Resources & Environm, Hangzhou 310058, Peoples R China
Zhejiang Ecol Civilizat Acad, Anji 313300, Peoples R ChinaBeijing Normal Univ Zhuhai, Fac Arts & Sci, Dept Geog Sci, Zhuhai 519087, Peoples R China
机构:
King Khalid Univ, Coll Comp Sci, Abha, Saudi ArabiaAmrita Vishwa Vidyapeetham, Amrita Sch Engn, Dept Math, Bengaluru, Karnataka, India
Masmoudi, Atef
Abdou, M. Modather M.
论文数: 0引用数: 0
h-index: 0
机构:
Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia
Aswan Univ, Fac Sci, Dept Math, Aswan 81528, EgyptAmrita Vishwa Vidyapeetham, Amrita Sch Engn, Dept Math, Bengaluru, Karnataka, India
Abdou, M. Modather M.
Ojok, Walter
论文数: 0引用数: 0
h-index: 0
机构:
Muni Univ, Fac Sci, Dept Chem, POB 725, Arua, UgandaAmrita Vishwa Vidyapeetham, Amrita Sch Engn, Dept Math, Bengaluru, Karnataka, India