共 57 条
Engineered Pt-Pd@RGO-KI nanosheet catalyst for enhanced electrocatalytic methanol oxidation performance
被引:4
作者:
Challa, Swathi
[1
,2
]
Nallagondu, Chinna Gangi Reddy
[2
]
Kulkarni, Rakesh
[3
]
Godlaveeti, Sreenivasa Kumar
[1
]
Yellatur, Chandra Sekhar
[2
]
Loka, Subramanyam Sarma
[2
]
Reddy, N. S.
[4
]
Koduru, Janardhan Reddy
[3
]
Somala, Adinarayana Reddy
[1
]
机构:
[1] YV Univ, Dept Mat Sci & Nanotechnol, Nanomat & Energy Res Lab, Kadapa 516005, India
[2] YV Univ, Dept Chem, Nanoelectrochem Lab, Kadapa 516005, India
[3] Kwangwoon Univ, Dept Environm Engn, Seoul 01897, South Korea
[4] Gyeongsang Natl Univ, Engn Res Inst, Sch Mat Sci & Engn, Virtual Mat Lab, Jinju 52828, South Korea
关键词:
Fuel cell catalyst;
Methyl oxidation reaction (MOR);
Hydrogen production;
Pt-Pd supported catalyst;
Energy conversion;
Electrocatalysts;
REDUCED GRAPHENE OXIDE;
FACILE SYNTHESIS;
FUEL-CELL;
NANOPARTICLES;
ELECTROOXIDATION;
FABRICATION;
NANOCUBES;
EFFICIENT;
NANOSTRUCTURES;
NANOCOMPOSITES;
D O I:
10.1016/j.mcat.2024.114771
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Electrocatalytic oxidation of methanol is crucial for the transition to clean energy and the effective utilization of renewable sources. The strategy to develop efficient electrocatalysts with improved efficiency and durability for the methanol oxidation (MOR) reaction is essential to enable the widespread usage of direct methanol fuel cells (DMFCs). This research proposes a novel, eco-friendly single-step procedure for preparing a highly efficient bimetallic platinum-palladium (Pt-Pd)/reduced graphene oxide-potassium iodide (RGO-KI) (PP@RGO-KI) nanocomposite sheet for electrocatalytic methanol oxidation. The method employs a chemical reduction strategy via a hydrothermal reaction, utilizing ascorbic acid (AA) as a simple and green reducing agent. The synergistic effects of Pt and Pd nanoparticles, along with enhanced electron transfer enabled by RGO, were examined by calculating the mass-normalized current densities (jmass) at 0.631 V for Pt/C, Pd/RGO, Pt-Pd/RGO (PP@RGO), Pt/RGO & PP@rGO-KI were 0.131, 0.171, 0.215, 0.421, and 0.526 mA/mu g-Pt, respectively. Furthermore, the specific current densities (jspecific) at 0.631 V were determined as follows: 0.298 mA/cm(2) for Pd/RGO, 0.337 mA/cm2 for Pt/C, 0.341 mA/cm(2) for Pt/RGO, 0.534 mA/cm(2) for PP@RGO, and 0.628 mA/cm(2 )for PP@RGO-KI. In additionally, the If/Ib values exhibited the following trend: PP@RGO-KI (1.72) > PP@RGO (1.54) > Pt/RGO (1.04) > Pt/C (1.01) > Pd/RGO (0.89), signifying that PP@RGO-KI is effective in preventing surface poisoning effects. The excellent electrocatalytic efficiency of the PP@RGO-KI, coupled with its facile and rapid manufacturing method, suggests significant potential for advancing DMFCs.
引用
收藏
页数:9
相关论文