Query-efficient black-box ensemble attack via dynamic surrogate weighting

被引:0
作者
Hu, Cong [1 ]
He, Zhichao
Wu, Xiaojun
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Black-box attack; Ensemble strategies; Deep neural networks; Transferable adversarial example; Image classification;
D O I
10.1016/j.patcog.2024.111263
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, deep neural networks (DNNs) have been widely applied across various fields, but the sensitivity of DNNs to adversarial attacks has attracted widespread attention. Existing research has highlighted the potential of ensemble attacks, which blend the strengths of transfer-based and query-based methods, to create highly transferable adversarial examples. It has been noted that simply amalgamating outputs from various models, without considering the gradient variances, can lead to low transferability. Furthermore, employing static model weights or inefficient weight update strategies may contribute to an unnecessary proliferation of query iterations. To address these issues, this paper introduces a novel black-box ensemble attack algorithm (DSWEA) that combines the Ranking Variance Reduced (RVR) ensemble strategy with the Dynamic Surrogate Weighting (DSW) weight update strategy. RVR employs multiple internal iterations within each query to compute and accumulate unbiased gradients, which are then used to update adversarial examples. This optimization of the gradient diminishes the negative impact of excessive gradient discrepancies between models, thereby enhancing the transferability of perturbations. DSW dynamically adjusts the surrogate weights in each query iteration based on model gradient information, guiding the efficient generation of perturbations. We conduct extensive experiments on the ImageNet and CIFAR-10 datasets, involving various models with varying architectures. Our empirical results reveal that our methodology outperforms existing state-of-the-art techniques, showcasing superior efficacy in terms of Attack Success Rate (ASR) and Average Number of Queries (ANQ).
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Black-box Bayesian adversarial attack with transferable priors
    Shudong Zhang
    Haichang Gao
    Chao Shu
    Xiwen Cao
    Yunyi Zhou
    Jianping He
    Machine Learning, 2024, 113 : 1511 - 1528
  • [32] Black-Box Decision based Adversarial Attack with Symmetric α-stable Distribution
    Srinivasan, Vignesh
    Kuruoglu, Ercan E.
    Mueller, Klaus-Robert
    Samek, Wojciech
    Nakajima, Shinichi
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [33] Simple and Efficient Hard Label Black-box Adversarial Attacks in Low Query Budget Regimes
    Shukla, Satya Narayan
    Sahu, Anit Kumar
    Willmott, Devin
    Kolter, Zico
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1461 - 1469
  • [34] Partial Retraining Substitute Model for Query-Limited Black-Box Attacks
    Park, Hosung
    Ryu, Gwonsang
    Choi, Daeseon
    APPLIED SCIENCES-BASEL, 2020, 10 (20): : 1 - 19
  • [35] ABCAttack: A Gradient-Free Optimization Black-Box Attack for Fooling Deep Image Classifiers
    Cao, Han
    Si, Chengxiang
    Sun, Qindong
    Liu, Yanxiao
    Li, Shancang
    Gope, Prosanta
    ENTROPY, 2022, 24 (03)
  • [36] Boosting Targeted Black-Box Attacks via Ensemble Substitute Training and Linear Augmentation
    Gao, Xianfeng
    Tan, Yu-an
    Jiang, Hongwei
    Zhang, Quanxin
    Kuang, Xiaohui
    APPLIED SCIENCES-BASEL, 2019, 9 (11):
  • [37] An Adversarial Network-based Multi-model Black-box Attack
    Lin, Bin
    Chen, Jixin
    Zhang, Zhihong
    Lai, Yanlin
    Wu, Xinlong
    Tian, Lulu
    Cheng, Wangchi
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 30 (02) : 641 - 649
  • [38] HYBRID ADVERSARIAL SAMPLE CRAFTING FOR BLACK-BOX EVASION ATTACK
    Zheng, Juan
    He, Zhimin
    Lin, Zhe
    2017 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2017, : 236 - 242
  • [39] An Invisible Black-Box Backdoor Attack Through Frequency Domain
    Wang, Tong
    Yao, Yuan
    Xu, Feng
    An, Shengwei
    Tong, Hanghang
    Wang, Ting
    COMPUTER VISION, ECCV 2022, PT XIII, 2022, 13673 : 396 - 413
  • [40] Black-box Adversarial Attack on License Plate Recognition System
    Chen J.-Y.
    Shen S.-J.
    Su M.-M.
    Zheng H.-B.
    Xiong H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (01): : 121 - 135