Generalized synchronization for fractional-order chaotic systems with same or different structure

被引:0
|
作者
Min, Fu-Hong [1 ,2 ]
Wang, Zhi-Quan [2 ]
机构
[1] School of Electronic Engineering and Automation, Nanjing Normal University, Nanjing 210042, China
[2] School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
来源
Kongzhi yu Juece/Control and Decision | 2008年 / 23卷 / 09期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1025 / 1029
相关论文
共 50 条
  • [31] New approach to synchronization of two different fractional-order chaotic systems
    Behinfaraz, Reza
    Badamchizadeh, Mohammad Ali
    2015 INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2015, : 149 - 153
  • [32] On Inverse Problem of Generalized Synchronization Between Different Dimensional Integer-Order and Fractional-Order Chaotic Systems
    Ouannas, Adel
    Azar, Ahmad Taher
    Radwan, Ahmed G.
    2016 28TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS (ICM 2016), 2016, : 193 - 196
  • [33] Modified Projective Synchronization of Fractional-order Chaotic Systems with Different Dimensions
    Zhang, Xi
    Wu, Ran-chao
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (02): : 527 - 538
  • [34] Fuzzy Synchronization Control for Fractional-Order Chaotic Systems With Different Structures
    Xu, Jin
    Li, Ning
    Zhang, Xiulan
    Qin, Xiaoli
    FRONTIERS IN PHYSICS, 2020, 8
  • [35] Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller
    Fayazi, Ali
    EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 : 333 - 339
  • [36] Combination Synchronization of Three Different Fractional-Order Delayed Chaotic Systems
    Li, Bo
    Zhou, Xiaobing
    Wang, Yun
    COMPLEXITY, 2019, 2019
  • [37] Modified Projective Synchronization of Fractional-order Chaotic Systems with Different Dimensions
    Xi Zhang
    Ran-chao Wu
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 527 - 538
  • [38] Projective lag synchronization for fractional-order chaotic systems with different orders
    Liu, Heng
    Yin, Zhixiang
    ICIC Express Letters, 2014, 8 (11): : 3221 - 3227
  • [39] Mittag–Leffler stability, control, and synchronization for chaotic generalized fractional-order systems
    Tarek M. Abed-Elhameed
    Tarek Aboelenen
    Advances in Continuous and Discrete Models, 2022
  • [40] Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems
    Sayed, Wafaa S.
    Henein, Moheb M. R.
    Abd-El-Hafiz, Salwa K.
    Radwan, Ahmed G.
    COMPLEXITY, 2017,