Power consumption model for Unmanned Aerial Vehicles using Recurrent Neural Network techniques

被引:0
作者
Saadi, Amylia Ait [1 ,2 ]
Bhuyan, Bikram Pratim [2 ]
Ramdane-Cherif, Amar [2 ]
机构
[1] ESME Sudria, 38 Rue Moliere, Ivry, France
[2] Univ Paris Saclay, LISV Lab, 10-12 Ave Europe, Velizy Villacoublay, France
关键词
Unmanned Aerial Vehicles (UAVs); Power consumption modeling; Machine learning; Deep learning; Activation functions; Self-attention mechanism;
D O I
10.1016/j.ast.2024.109819
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Unmanned Aerial Vehicles (UAVs) have become increasingly integral across diverse sectors, necessitating accurate power consumption modeling to optimize flight operations and ensure reliability. Traditional approaches often fail to capture the intricate, non-linear dynamics between operational parameters and power usage. This study introduces deep learning techniques, including RNN, GRU, LSTM, Bi-LSTM, and SA-Bi-LSTM, with various activation functions and optimizers for predicting UAV power consumption using an extensive dataset. Additionally, the influence of activation functions and optimization algorithms on model performance is assessed. Bi-LSTM demonstrates superior predictive accuracy, as evidenced by RMSE and MAE metrics.
引用
收藏
页数:22
相关论文
共 79 条
  • [51] Nair V., 2010, 27 INT C MACHINE LEA, P807, DOI DOI 10.5555/3104322.3104425
  • [52] Nwankpa C, 2018, Arxiv, DOI [arXiv:1811.03378, 10.48550/arXiv.1811.03378, DOI 10.48550/ARXIV.1811.03378]
  • [53] Pinkus A., 1999, Acta Numerica, V8, P143, DOI 10.1017/S0962492900002919
  • [54] Mission-Based Energy Consumption Prediction of Multirotor UAV
    Prasetia, Alex S.
    Wai, Rong-Jong
    Wen, Yi-Lun
    Wang, Yu-Kai
    [J]. IEEE ACCESS, 2019, 7 : 33055 - 33063
  • [55] Qiu S, 2018, INT C PATT RECOG, P1223, DOI 10.1109/ICPR.2018.8546022
  • [56] Ramachandran P, 2017, Arxiv, DOI [arXiv:1710.05941, DOI 10.48550/ARXIV.1710.05941]
  • [57] A STOCHASTIC APPROXIMATION METHOD
    ROBBINS, H
    MONRO, S
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (03): : 400 - 407
  • [58] Rodrigues Thiago A, 2020, Figshare, DOI 10.1184/R1/12683453.v3
  • [59] LEARNING REPRESENTATIONS BY BACK-PROPAGATING ERRORS
    RUMELHART, DE
    HINTON, GE
    WILLIAMS, RJ
    [J]. NATURE, 1986, 323 (6088) : 533 - 536
  • [60] Salehinejad H, 2018, Arxiv, DOI [arXiv:1801.01078, DOI 10.48550/ARXIV.1801.01078]