The asymptotic size of the largest component in random geometric graphs with some applications

被引:0
|
作者
机构
[1] Chen, Ge
[2] Yao, Changlong
[3] Guo, Tiande
来源
| 1600年 / Applied Probability Trust卷 / 46期
关键词
D O I
10.1239/aap/1401369696
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] The largest eigenvalue of sparse random graphs
    Krivelevich, M
    Sudakov, B
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (01): : 61 - 72
  • [42] The largest hole in sparse random graphs
    Draganic, Nemanja
    Glock, Stefan
    Krivelevich, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (04) : 666 - 677
  • [43] Largest sparse subgraphs of random graphs
    Fountoulakis, Nikolaos
    Kang, Ross J.
    McDiarmid, Colin
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 232 - 244
  • [44] Some asymptotic inference on nonlinear models with random effects (A geometric approach)
    Xuping Z.
    Bocheng W.
    Applied Mathematics-A Journal of Chinese Universities, 1998, 13 (3) : 301 - 308
  • [46] CRITICALITY OF THE EXPONENTIAL RATE OF DECAY FOR THE LARGEST NEAREST-NEIGHBOR LINK IN RANDOM GEOMETRIC GRAPHS
    Gupta, Bhupender
    Iyer, Srikanth K.
    ADVANCES IN APPLIED PROBABILITY, 2010, 42 (03) : 631 - 658
  • [47] The size of the largest strongly connected component of a random digraph with a given degree sequence
    Cooper, C
    Frieze, A
    COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (03): : 319 - 337
  • [48] THE ASYMPTOTIC DISTRIBUTIONS OF GENERALIZED U-STATISTICS WITH APPLICATIONS TO RANDOM GRAPHS
    JANSON, S
    NOWICKI, K
    PROBABILITY THEORY AND RELATED FIELDS, 1991, 90 (03) : 341 - 375
  • [49] Random models for geometric graphs
    Serna, Maria
    EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2007, 4525 : 37 - 37
  • [50] SYNCHRONIZATION IN RANDOM GEOMETRIC GRAPHS
    Diaz-Guilera, Albert
    Gomez-Gardenes, Jesus
    Moreno, Yamir
    Nekovee, Maziar
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (02): : 687 - 693