Sulfide-based solid electrolyte and electrode membranes for all-solid-state lithium batteries

被引:2
作者
Chen, Zhenying [1 ,5 ]
Hou, Junbo [2 ]
Yang, Min [3 ]
Zhu, Jinhui [1 ]
Zhuang, Xiaodong [1 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai Key Lab Elect Insulat & Thermal Ageing, Soft2D Lab,Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Power Syst Resources Environm Technol Co Ltd, 585 Changan North Rd, Haiyan 314399, Peoples R China
[3] Shanghai Dianji Univ, 300 Shuihua Rd, Shanghai 201306, Peoples R China
[4] Shanghai Jiao Tong Univ, Zhang Jiang Inst Adv Study, Frontiers Sci Ctr Transformat Mol, Shanghai 201203, Peoples R China
[5] Zhengzhou Univ, Coll Chem, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
All-solid-state lithium batteries; Sulfide solid electrolyte; Solid electrolyte membrane; Composite electrode membranes; Pouch cells; HIGH-ENERGY-DENSITY; SUPERIONIC CONDUCTOR; THERMAL-STABILITY; IONIC CONDUCTOR; DESIGN STRATEGY; THIO-LISICON; BINDER; PERFORMANCE; DRY; SOLVENT;
D O I
10.1016/j.cej.2024.158136
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sulfide-based all-solid-state lithium batteries (ASSLBs) have garnered significant attention from both academia and industry due to their potential to address the limited energy density and safety concerns of conventional Liion batteries (LIBs), while benefiting from the high ionic conductivity and ductility of sulfide solid electrolytes (SEs). Developing sulfide SE membranes and sulfide-containing composite electrode membranes is crucial for maximizing the use of existing LIB manufacturing equipment and technologies in ASSLB production. However, compared to the rapid advancements in sulfide-based prototype cells, progress in sulfide-based membranes and corresponding pouch cells has been relatively slow. This review aims to bridge that gap by summarizing the evolution of sulfide-based membranes as a valuable resource for researchers. We begin by discussing the development and properties of sulfide SEs. Then, we elaborate on the various strategies for preparing sulfidebased membranes, including solvent-assisted coating processes (focusing on solvent, binder, and skeleton/substrate selection), solvent-free dry processes (binder selection for fibrillation and hot-pressing, as well as the use of skeletons), and other fabrication methods. Finally, we analyze the chemical and physical requirements for sulfide-based membranes and the resulting pouch cells, and provide an outlook on the challenges and prospects for sulfide-based membranes and ASS pouch cells.
引用
收藏
页数:23
相关论文
共 173 条
[31]   Insights on Bi-O dual-doped Li 5.5 PS 4.5 Cl 1.5 electrolyte with enhanced electrochemical properties for all-solid-state lithium metal batteries [J].
Jiang, Ziling ;
Yang, Jie ;
Liu, Chen ;
Wei, Chaochao ;
Wu, Zhongkai ;
Luo, Qiyue ;
Zhang, Long ;
Chen, Xia ;
Li, Liping ;
Li, Guangshe ;
Cheng, Shijie ;
Yu, Chuang .
NANO ENERGY, 2024, 128
[32]   Fluorinated Li10GeP2S12 Enables Stable All-Solid-State Lithium Batteries [J].
Jin, Yuming ;
He, Qinsheng ;
Liu, Gaozhan ;
Gu, Zhi ;
Wu, Ming ;
Sun, Tianyu ;
Zhang, Zhihua ;
Huang, Liangfeng ;
Yao, Xiayin .
ADVANCED MATERIALS, 2023, 35 (19)
[33]   High-Performance Sheet-Type Sulfide All-Solid-State Batteries Enabled by Dual-Function Li4.4Si Alloy-Modified Nano Silicon Anodes [J].
Jing, Shenghao ;
Lu, Yang ;
Huang, Yuting ;
Liu, Hanzhou ;
Shen, YuXing ;
Kuang, Wuqi ;
Shen, Huaqing ;
Liu, Siliang ;
Zhang, Zongliang ;
Liu, Fangyang .
ADVANCED MATERIALS, 2024, 36 (40)
[34]   Ultra-Stable Breathing Anode for Li-Free All-Solid-State Battery Based on Li Concentration Gradient in Magnesium Particles [J].
Jun, Dayoung ;
Park, Se Hwan ;
Jung, Ji Eun ;
Lee, Seong Gyu ;
Kim, Kyu Seok ;
Kim, Ji Young ;
Bae, Ki Yoon ;
Son, Samick ;
Lee, Yun Jung .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (08)
[35]   Dry-Electrode All-Solid-State Batteries Fortified with a Moisture Absorbent [J].
Jung, Jae Yup ;
Han, Sang A. ;
Kim, Hyun-seung ;
Suh, Joo Hyeong ;
Yu, Ji-Sang ;
Cho, Woosuk ;
Park, Min-Sik ;
Kim, Jung Ho .
ACS NANO, 2023, 17 (16) :15931-15941
[36]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/nmat3066, 10.1038/NMAT3066]
[37]   Lithium ionic conductor thio-LISICON -: The Li2S-GeS2-P2S5 system [J].
Kanno, R ;
Maruyama, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (07) :A742-A746
[38]   Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system [J].
Kanno, R ;
Hata, T ;
Kawamoto, Y ;
Irie, M .
SOLID STATE IONICS, 2000, 130 (1-2) :97-104
[39]   High-power all-solid-state batteries using sulfide superionic conductors [J].
Kato, Yuki ;
Hori, Satoshi ;
Saito, Toshiya ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Mitsui, Akio ;
Yonemura, Masao ;
Iba, Hideki ;
Kanno, Ryoji .
NATURE ENERGY, 2016, 1
[40]   Thin, Highly Ionic Conductive, and Mechanically Robust Frame-Based Solid Electrolyte Membrane for All-Solid-State Li Batteries [J].
Kim, Dohwan ;
Lee, Hyobin ;
Roh, Youngjoon ;
Lee, Jongjun ;
Song, Jihun ;
Dzakpasu, Cyril Bubu ;
Kang, Seok Hun ;
Choi, Jaecheol ;
Kim, Dong Hyeon ;
Hah, Hoe Jin ;
Cho, Kuk Young ;
Lee, Young-Gi ;
Lee, Yong Min .
ADVANCED ENERGY MATERIALS, 2024, 14 (02)