Sulfide-based solid electrolyte and electrode membranes for all-solid-state lithium batteries

被引:2
作者
Chen, Zhenying [1 ,5 ]
Hou, Junbo [2 ]
Yang, Min [3 ]
Zhu, Jinhui [1 ]
Zhuang, Xiaodong [1 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai Key Lab Elect Insulat & Thermal Ageing, Soft2D Lab,Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Power Syst Resources Environm Technol Co Ltd, 585 Changan North Rd, Haiyan 314399, Peoples R China
[3] Shanghai Dianji Univ, 300 Shuihua Rd, Shanghai 201306, Peoples R China
[4] Shanghai Jiao Tong Univ, Zhang Jiang Inst Adv Study, Frontiers Sci Ctr Transformat Mol, Shanghai 201203, Peoples R China
[5] Zhengzhou Univ, Coll Chem, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
All-solid-state lithium batteries; Sulfide solid electrolyte; Solid electrolyte membrane; Composite electrode membranes; Pouch cells; HIGH-ENERGY-DENSITY; SUPERIONIC CONDUCTOR; THERMAL-STABILITY; IONIC CONDUCTOR; DESIGN STRATEGY; THIO-LISICON; BINDER; PERFORMANCE; DRY; SOLVENT;
D O I
10.1016/j.cej.2024.158136
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sulfide-based all-solid-state lithium batteries (ASSLBs) have garnered significant attention from both academia and industry due to their potential to address the limited energy density and safety concerns of conventional Liion batteries (LIBs), while benefiting from the high ionic conductivity and ductility of sulfide solid electrolytes (SEs). Developing sulfide SE membranes and sulfide-containing composite electrode membranes is crucial for maximizing the use of existing LIB manufacturing equipment and technologies in ASSLB production. However, compared to the rapid advancements in sulfide-based prototype cells, progress in sulfide-based membranes and corresponding pouch cells has been relatively slow. This review aims to bridge that gap by summarizing the evolution of sulfide-based membranes as a valuable resource for researchers. We begin by discussing the development and properties of sulfide SEs. Then, we elaborate on the various strategies for preparing sulfidebased membranes, including solvent-assisted coating processes (focusing on solvent, binder, and skeleton/substrate selection), solvent-free dry processes (binder selection for fibrillation and hot-pressing, as well as the use of skeletons), and other fabrication methods. Finally, we analyze the chemical and physical requirements for sulfide-based membranes and the resulting pouch cells, and provide an outlook on the challenges and prospects for sulfide-based membranes and ASS pouch cells.
引用
收藏
页数:23
相关论文
共 173 条
[1]   Operando Photoelectron Spectroscopy Analysis of Li6PS5Cl Electrochemical Decomposition Reactions in Solid-State Batteries [J].
Aktekin, Burak ;
Kataev, Elmar ;
Riegger, Luise M. ;
Garcia-Diez, Raul ;
Chalkley, Zora ;
Becker, Juri ;
Wilks, Regan G. ;
Henss, Anja ;
Baer, Marcus ;
Janek, Juergen .
ACS ENERGY LETTERS, 2024, 9 (07) :3492-3500
[2]   POLYMER SOLID ELECTROLYTES - AN OVERVIEW [J].
ARMAND, M .
SOLID STATE IONICS, 1983, 9-10 (DEC) :745-754
[3]   Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte [J].
Ates, Tugce ;
Keller, Marlou ;
Kulisch, Joern ;
Adermann, Torben ;
Passerini, Stefano .
ENERGY STORAGE MATERIALS, 2019, 17 :204-210
[4]   Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction [J].
Bai, Lu ;
Duan, Zhiyao ;
Wen, Xudong ;
Si, Rui ;
Guan, Jingqi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 257
[5]   Research progress in Li-argyrodite-based solid-state electrolytes [J].
Bai, Xiangtao ;
Duan, Yi ;
Zhuang, Weidong ;
Yang, Rong ;
Wang, Jiantao .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (48) :25663-25686
[6]   Enabling High-Energy Solid-State Batteries with Stable Anode Interphase by the Use of Columnar Silicon Anodes [J].
Cangaz, Sahin ;
Hippauf, Felix ;
Reuter, Florian Steffen ;
Doerfler, Susanne ;
Abendroth, Thomas ;
Althues, Holger ;
Kaskel, Stefan .
ADVANCED ENERGY MATERIALS, 2020, 10 (34)
[7]   Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries [J].
Cao, Daxian ;
Sun, Xiao ;
Wang, Ying ;
Zhu, Hongli .
ENERGY STORAGE MATERIALS, 2022, 48 :458-465
[8]   Amphipathic Binder Integrating Ultrathin and Highly Ion-Conductive Sulfide Membrane for Cell-Level High-Energy-Density All-Solid-State Batteries [J].
Cao, Daxian ;
Li, Qiang ;
Sun, Xiao ;
Wang, Ying ;
Zhao, Xianhui ;
Cakmak, Ercan ;
Liang, Wentao ;
Anderson, Alexander ;
Ozcan, Soydan ;
Zhu, Hongli .
ADVANCED MATERIALS, 2021, 33 (52)
[9]   Lithium Borate Polycarbonates for High-Capacity Solid-State Composite Cathodes [J].
Charlesworth, Thomas ;
Yiamsawat, Kanyapat ;
Gao, Hui ;
Rees, Gregory J. ;
Williams, Charlotte K. ;
Bruce, Peter G. ;
Pasta, Mauro ;
Gregory, Georgina L. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (33)
[10]   Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces [J].
Chen, Rusong ;
Li, Qinghao ;
Yu, Xiqian ;
Chen, Liquan ;
Li, Hong .
CHEMICAL REVIEWS, 2020, 120 (14) :6820-6877