Global dynamics of a generalized arbitrary order Van der Pol-Duffing Oscillator☆

被引:0
|
作者
Zhou, Jueliang [2 ]
Zou, Lan [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
关键词
Bifurcation diagram; Phase portrait; Limit cycle; Heteroclinic loop; SYSTEM;
D O I
10.1016/j.cnsns.2024.108445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the global bifurcation diagram and corresponding global phase portraits in the Poincar & eacute; disc for a generalized van der Pol-Duffing oscillator, which has four nonlinear terms with arbitrary orders. This nonlinear oscillator possesses more diverse and complicated dynamical behaviours, including the heteroclinic bifurcation, generalized Hopf bifurcation and pitchfork bifurcation. Moreover, theoretical results are exhibited via numerical simulations.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Solar magnetic cycles as a Van Der Pol-Duffing oscillator: new insights
    Chadou, Ilhem
    Belhadi, Zahir
    Becheker, Katia
    Zaidi, Abdeldjalil
    Bekli, Mohamed Reda
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (04) : 10416 - 10424
  • [32] Oscillation-sliding in a modified van der Pol-Duffing electronic oscillator
    Algaba, A
    Fernández-Sánchez, F
    Freire, E
    Gamero, E
    Rodríguez-Luis, AJ
    JOURNAL OF SOUND AND VIBRATION, 2002, 249 (05) : 899 - 907
  • [33] On the stability properties of a Van der Pol-Duffing oscillator that is driven by a real noise
    Liu, XB
    Liew, KM
    JOURNAL OF SOUND AND VIBRATION, 2005, 285 (1-2) : 27 - 49
  • [34] Effects of time delayed position feedback on a van der Pol-Duffing oscillator
    Xu, J
    Chung, KW
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 180 (1-2) : 17 - 39
  • [35] An efficient approach to solving fractional Van der Pol-Duffing jerk oscillator
    El-Dib, Yusry O.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (10)
  • [36] A van der Pol-Duffing Oscillator Model of Hydrodynamic Forces on Canonical Structures
    Akhtar, Imran
    Marzouk, Osama A.
    Nayfeh, Ali H.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2009, 4 (04): : 1 - 9
  • [37] Strongly resonant bifurcations of nonlinearly coupled van der pol-duffing oscillator
    Chunbiao G.
    Qishao L.
    Kelei H.
    Applied Mathematics and Mechanics, 1999, 20 (1) : 68 - 75
  • [38] Combination of fractional FLANN filters for solving the Van der Pol-Duffing oscillator
    Yin, Kai-Li
    Pu, Yi-Fei
    Lu, Lu
    NEUROCOMPUTING, 2020, 399 : 183 - 192
  • [39] Strongly resonant bifurcations of nonlinearly coupled Van der Pol-Duffing Oscillator
    Gan, CB
    Lu, QS
    Huang, KL
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1999, 20 (01) : 68 - 75
  • [40] General synchronization dynamics of coupled Van der Pol-Duffing oscillators
    Kadji, H. G. Enjieu
    Yamapi, R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 370 (02) : 316 - 328