Alkali-activated pastes by Basic Oxygen Furnace slag and fly ash: Mechanical and microstructural analysis

被引:0
|
作者
da Costa, Heloina Nogueira [1 ]
Cabral, Antonio Eduardo Bezerra [2 ]
Nogueira, Ricardo Emilio Ferreira Quevedo [3 ]
机构
[1] Fed Univ Ceara UFC, Campus Crateus, Crateus, Ceara, Brazil
[2] Fed Univ Ceara UFC, Dept Struct Engn & Civil Construct DEECC, Fortaleza, Ceara, Brazil
[3] Fed Univ Ceara UFC, Dept Met & Mat Engn, Fortaleza, Ceara, Brazil
关键词
Industrial by-products; Alkali-activated paste; Basic Oxygen Furnace; Steel slag; Fly ash; S-H GELS; FRACTURE PROPERTIES; PHASE EVOLUTION; STRENGTH; HYDRATION; GEOPOLYMERS; COMPOSITES; METAKAOLIN; KINETICS; CONCRETE;
D O I
10.1016/j.cscm.2024.e04128
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study aims to investigate the mechanical behavior and microstructure formation of alkaliactivated pastes prepared from basic oxygen furnace (BOF) steel slag and fly ash (FA). In addition, the fluidity and setting time of five different proportions of FA and BOF (0/100, 75/25, 50/ 50, 25/75 and 100/0) were prepared using silicate and sodium hydroxide as activators. Compressive strength (1, 7 and 28 days), stress-strain curve, modulus of elasticity and fracture energy were evaluated in the hardened state. Infrared spectroscopy, scanning electron microscopy, X-ray diffraction and thermal analysis were used to analyze the microstructure. The best mini-slump results was 50/50 paste with 117.3 mm, 8.0 Pa and 2096.8 kg/m3 of spreading diameter, yield stress and density, respectively. The calcium present in BOF accelerated the setting time. Compressive strength of paste 50/50 presented higher, 52.3, 57.6 and 62.3 MPa at 1, 7 and 28 days and also the higher modulus of elasticity (25.9 GPa) and fracture energy (116.9 N/ m). Microstructural analyses indicate the increasing the BOF slag content, increases the availability of calcium, densifying the microstructure, due to the formation of C-(N)-A-S-H (hydrated calcium aluminosilicate) and C-A-S-H (hydrated calcium aluminosilicate) gels, which are also responsible for the mechanical strength growth up to 50 % BOF increment. However, in pastes with higher fly ash contents (75/25 and 100/0), the N-A-S-H (hydrated sodium aluminosilicate) gel type predominates. Therefore, the results obtained confirm the potential of using BOF slag as a calcium and Fa as a silica source in alkali-activated pastes.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Setting, Strength, and Autogenous Shrinkage of Alkali-Activated Fly Ash and Slag Pastes: Effect of Slag Content
    Nedeljkovic, Marija
    Li, Zhenming
    Ye, Guang
    MATERIALS, 2018, 11 (11):
  • [22] Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash
    Ismail, Idawati
    Bernal, Susan A.
    Provis, John L.
    Nicolas, Rackel San
    Hamdan, Sinin
    van Deventer, Jannie S. J.
    CEMENT & CONCRETE COMPOSITES, 2014, 45 : 125 - 135
  • [23] Comparison of two alkali-activated systems: mechanically activated fly ash and fly ash-blast furnace slag blends
    Marjanovic, Natasa
    Komljenovic, Miroslav
    Bascarevic, Zvezdana
    Nikolic, Violeta
    7TH SCIENTIFIC-TECHNICAL CONFERENCE ON MATERIAL PROBLEMS IN CIVIL ENGINEERING (MATBUD'2015), 2015, 108 : 231 - 238
  • [24] Influence of the Fly Ash Content on the Fresh and Hardened Properties of Alkali-Activated Slag Pastes with Admixtures
    de Hita, Maria Jimena
    Criado, Maria
    MATERIALS, 2022, 15 (03)
  • [25] Internal curing of alkali-activated fly ash-slag pastes using superabsorbent polymer
    Tu, Wenlin
    Zhu, Yu
    Fang, Guohao
    Wang, Xingang
    Zhang, Mingzhong
    CEMENT AND CONCRETE RESEARCH, 2019, 116 : 179 - 190
  • [26] Drying shrinkage performance of Medium-Ca alkali-activated fly ash and slag pastes
    Huang, Dunwen
    Chen, Peng
    Peng, Hui
    Yuan, Qiaoming
    Tian, Xiang
    CEMENT & CONCRETE COMPOSITES, 2022, 130
  • [27] Mechanical Properties and Microstructure of Alkali-Activated Cements with Granulated Blast Furnace Slag, Fly Ash and Desert Sand
    Liu, Yunpeng
    Yang, Xihao
    Tian, Wendi
    Fu, Zhenbo
    Zhao, Yimeng
    Li, Binghan
    Li, Shiji
    Xu, Da
    Yu, Shige
    Yao, Zhiyu
    Zhao, Tian
    Ouyang, Xinfeng
    Wang, Guangfei
    Yu, Hai
    Li, Dan
    Guo, Rongxin
    Wei, Yen
    Niu, Kangmin
    BUILDINGS, 2024, 14 (11)
  • [28] Analysis of reaction degree and factors of alkali-activated fly ash/slag
    Wang, Bowen
    Liu, Yang
    Luo, Dong
    Yang, Yiwei
    Huang, Dunwen
    Peng, Hui
    MAGAZINE OF CONCRETE RESEARCH, 2023, 75 (18) : 955 - 964
  • [29] Microanalysis of alkali-activated fly ash-CH pastes
    Williams, PJ
    Biernacki, JJ
    Walker, LR
    Meyer, HM
    Rawn, CJ
    Bai, JM
    CEMENT AND CONCRETE RESEARCH, 2002, 32 (06) : 963 - 972
  • [30] Physical and mechanical properties of hemp fibre reinforced alkali-activated fly ash and fly ash/slag mortars
    Poletanovic, Bojan
    Dragas, Jelena
    Ignjatovic, Ivan
    Komljenovic, Miroslav
    Merta, Ildiko
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 259