The method of gain parameterizing measurement data and parameter estimation for a proton exchange membrane fuel cell model

被引:0
|
作者
Fitriani, Raydha Z. [1 ]
Kuan, Yean-Der [2 ]
机构
[1] Natl Chin Yi Univ Technol, Grad Inst Precis Mfg, Taichung, Taiwan
[2] Natl Chin Yi Univ Technol, Dept Refrigerat Air Conditioning & Energy Engn, Taichung, Taiwan
关键词
PEMFC; genetic algorithm; gain; MATLAB/Simulink; ALGORITHM; PERFORMANCE; SIMULATION;
D O I
10.1093/jom/ufae060
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Proton exchange membrane fuel cells (PEMFCs) are a technology that produces clean energy, with promising prospects in wide applications because of their high power density and low operating temperature. Experiments conducted to develop the PEMFC are both time-consuming and costly. Through modeling and simulation, performance development and analysis can be done more efficiently. This paper presents a simulation model for PEMFC based on mathematical equations developed using MATLAB/Simulink. To fully grasp and reproduce PEMFC characteristics, empirical parameter estimation using the genetic algorithm (GA) is implemented. The parameters estimated from the loss equations have not been previously utilized. A script connecting Simulink and the GA was developed to estimate these parameters. Validation is conducted by comparing the polarization curve simulation results with experimental data for both single-cell and stack-type PEMFCs. Comparisons with various other estimation methods were conducted to assess the reliability of the employed method. The model that utilizes estimated parameters exhibits agreement with experimental data showcasing an error value <3%. Furthermore, the method's superiority is evident from the polarization curve as well as the objective value. Observing the reaction conditions in each PEMFC loss region with the obtained parameter values becomes easier and more accessible.
引用
收藏
页码:810 / 819
页数:10
相关论文
共 50 条
  • [1] Developed teamwork optimizer for model parameter estimation of the proton exchange membrane fuel cell
    Syah, Rahmad
    Guerrero, John William Grimaldo
    Poltarykhin, Andrey Leonidovich
    Suksatan, Wanich
    Aravindhan, Surendar
    Bokov, Dmitry O.
    Abdelbasset, Walid Kamal
    Al-Janabi, Samaher
    Alkaim, Ayad F.
    Tumanov, Dmitriy Yu.
    ENERGY REPORTS, 2022, 8 : 10776 - 10785
  • [2] Parameter Estimation for a Proton Exchange Membrane Fuel Cell Model Using GRG Technique
    Geem, Z. W.
    Noh, J. -S.
    FUEL CELLS, 2016, 16 (05) : 640 - 645
  • [3] Simultaneously Parameter Identification and Measurement-Noise Covariance estimation of a Proton Exchange Membrane Fuel Cell
    Ghaderi, Razieh
    Daeichian, Ndabolghasem
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION AND AUTOMATION (ICCIA), 2019, : 343 - 347
  • [4] Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell
    Zhang, Wei
    Wang, Ning
    Yang, Shipin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (14) : 5796 - 5806
  • [5] Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell
    Rezk, Hegazy
    Olabi, A. G.
    Ferahtia, Seydali
    Sayed, Enas Taha
    ENERGY, 2022, 255
  • [6] An accurate method for parameter estimation of proton exchange membrane fuel cell using Dandelion optimizer
    Mujeer, Syed Abdul
    Chandrasekhar, Yammani
    Kumari, Matam Sailaja
    Salkuti, Surender Reddy
    INTERNATIONAL JOURNAL OF EMERGING ELECTRIC POWER SYSTEMS, 2024, 25 (03) : 333 - 344
  • [7] A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model
    Yang, Shipin
    Wang, Ning
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (10) : 8465 - 8476
  • [8] Method to improve catalyst layer model for modelling proton exchange membrane fuel cell
    Zhang, Xiaoxian
    Gao, Yuan
    Ostadi, Hossein
    Jiang, Kyle
    Chen, Rui
    JOURNAL OF POWER SOURCES, 2015, 289 : 114 - 128
  • [9] Novel reinforcement learning technique based parameter estimation for proton exchange membrane fuel cell model
    Salem, Nermin M.
    Shaheen, Mohamed A. M.
    Hasanien, Hany M.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [10] Optimal Parameter Estimation of Proton Exchange Membrane Fuel Cells
    Abdullah, A. M.
    Rezk, Hegazy
    Hadad, A.
    Hassan, Mohamed K.
    Mohamed, A. F.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (02) : 619 - 631