Molecular-Level designed gel polymer electrolyte with ultrahigh lithium transference number for high-performance lithium metal batteries

被引:8
作者
Huang, Junqiao [1 ]
Shen, Zhichuan [1 ]
Li, Jinhan [2 ]
Alodhayb, Abdullah N. [3 ]
Li, Chunsheng [4 ]
Sun, Yan [4 ]
Cheng, Fangyi [2 ]
Shi, Zhicong [1 ]
机构
[1] Guangdong Univ Technol, Inst Batteries, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[2] Nankai Univ, Coll Chem, Engn Res Ctr High Efficiency Energy Storage, State key Lab Adv Chem Power Sources,Key Lab Adv E, Tianjin 300071, Peoples R China
[3] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[4] Suzhou Univ Sci & Technol, Sch Chem & Life Sci, Key Lab Adv Electrode Mat Novel Solar Cells Petr &, Suzhou 215009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
In-situ gel polymer electrolyte; Pentaerythritol tetraacrylate; Polyacrylonitrile; Lithium metal batteries; High lithium tranference number; ION; DYNAMICS;
D O I
10.1016/j.cej.2024.158671
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The heterogeneous migration of dual ions within the gel polymer electrolytes (GPEs)-based lithium metal batteries leads to significant concentration polarization and compromises interfacial stability during cycling. Therefore, an in-situ GPE (BAEDA-PETEA-LE-PAN) is fabricated in polyacrylonitrile (PAN) porous membrane, with the benzene ring-containing bisphenol A ethoxylate diacrylate (BAEDA) oligomer and the pentaerythritol tetraacrylate (PETEA) monomer serving as the polymer backbone. BAEDA engages in multi-site adsorption interaction with the lithium salt anion, while simultaneously exhibiting mild coordination interaction with Li+. This intermolecular interaction restricts the migration of the anion and increases the ionic transfer number of BAEDA-PETEA-LE-PAN (tLi+ = 0.93). As expected, the Li|BAEDA-PETEA-LE-PAN|Li battery demonstrates exceptional cycling performance with an extended lifespan of approximately 1400 h while maintaining a negligible overpotential of only 8 mV at a current density of 0.05 mA cm- 2. Also, NCM811|BAEDA-PETEA-LE-PAN|Li battery exhibits stable operation for 200 cycles at a rate of 3C with a capacity retention of 83 %. This study presents a novel design philosophy for the development of in-situ formation GPEs in high-energy-density lithium metal batteries.
引用
收藏
页数:13
相关论文
共 69 条
[41]   Effect of LiTFSI and LiFSI on Cycling Performance of Lithium Metal Batteries Using Thermoplastic Polyurethane/Halloysite Nanotubes Solid Electrolyte [J].
Shen, Zhichuan ;
Zhong, Jiawei ;
Xie, Wenhao ;
Chen, Jinbiao ;
Ke, Xi ;
Ma, Jianmin ;
Shi, Zhicong .
ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2021, 34 (03) :359-372
[42]   Coordination bonding-based polydopamine-modified mesoporous silica for sustained avermectin release [J].
Shen, Zhichuan ;
Wen, Hongjian ;
Zhou, Hongjun ;
Hao, Li ;
Chen, Huayao ;
Zhou, Xinhua .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 105
[43]   Molecule-Level Multiscale Design of Nonflammable Gel Polymer Electrolyte to Build Stable SEI/CEI for Lithium Metal Battery [J].
Sun, Qiqi ;
Gong, Zelong ;
Zhang, Tao ;
Li, Jiafeng ;
Zhu, Xianli ;
Zhu, Ruixiao ;
Wang, Lingxu ;
Ma, Leyuan ;
Li, Xuehui ;
Yuan, Miaofa ;
Zhang, Zhiwei ;
Zhang, Luyuan ;
Qian, Zhao ;
Yin, Longwei ;
Ahuja, Rajeev ;
Wang, Chengxiang .
NANO-MICRO LETTERS, 2025, 17 (01)
[44]   Degradation of Ethylene Carbonate Electrolytes of Lithium Ion Batteries via Ring Opening Activated by LiCoO2 Cathode Surfaces and Electrolyte Species [J].
Tebbe, Jonathon L. ;
Fuerst, Thomas F. ;
Musgrave, Charles B. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (40) :26664-26674
[45]   Impact of Selected LiPF6 Hydrolysis Products on the High Voltage Stability of Lithium-Ion Battery Cells [J].
Wagner, Ralf ;
Korth, Martin ;
Streipert, Benjamin ;
Kasnatscheew, Johannes ;
Gallus, Dennis R. ;
Brox, Sebastian ;
Arnereller, Marius ;
Cekic-Laskovic, Isidora ;
Winter, Martin .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (45) :30871-30878
[46]   Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte lnterphase [J].
Wan, Guojia ;
Guo, Feihu ;
Li, Hui ;
Cao, Yuliang ;
Ai, Xinping ;
Qian, Jiangfeng ;
Li, Yangxing ;
Yang, Hanxi .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (01) :593-601
[47]   High Polymerization Conversion and Stable High-Voltage Chemistry Underpinning an In Situ Formed Solid Electrolyte [J].
Wang, Chen ;
Zhang, Huanrui ;
Dong, Shanmu ;
Hu, Zhenglin ;
Hu, Rongxiang ;
Guo, Ziyang ;
Wang, Tao ;
Cui, Guanglei ;
Chen, Liquan .
CHEMISTRY OF MATERIALS, 2020, 32 (21) :9167-9175
[48]   Accelerating lithium ion transport via increasing the entropy of the electrolyte for stable lithium metal batteries [J].
Wang, Chuan ;
Ouyang, Tenglong ;
Wang, Xinxiang ;
Liu, Sheng ;
Tian, Guilei ;
Fan, Fengxia ;
Liu, Pengfei ;
Wang, Shuhan ;
Zeng, Chenrui ;
Shu, Chaozhu .
JOURNAL OF ENERGY CHEMISTRY, 2024, 99 :384-392
[49]   Optimized Lithium Ion Coordination via Chlorine Substitution to Enhance Ionic Conductivity of Garnet-Based Solid Electrolytes [J].
Wang, Shuhan ;
Zeng, Ting ;
Wen, Xiaojuan ;
Xu, Haoyang ;
Fan, Fengxia ;
Wang, Xinxiang ;
Tian, Guilei ;
Liu, Sheng ;
Liu, Pengfei ;
Wang, Chuan ;
Zeng, Chenrui ;
Shu, Chaozhu .
SMALL, 2024, 20 (31)
[50]   Effective resistance to dendrite growth of NASICON solid electrolyte with lower electronic conductivity [J].
Wang, Xinxin ;
Chen, Jingjing ;
Mao, Zhiyong ;
Wang, Dajian .
CHEMICAL ENGINEERING JOURNAL, 2022, 427 (427)