A new path planning strategy driven by geometric features and tensile properties for 3D printing of continuous fiber reinforced thermoplastic composites

被引:4
作者
Wang, Gongshuo [1 ,2 ]
Wang, Fuji [1 ,2 ]
Guan, Shouyan [1 ,2 ]
Fu, Rao [1 ,2 ]
Wang, Hongquan [1 ,2 ]
Lei, Yajing [1 ,2 ]
机构
[1] Dalian Univ Technol, Sch Mech Engn, State Key Lab High Performance Precis Mfg, Dalian 116024, Peoples R China
[2] Key Lab High performance Mfg Adv Composite Mat, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; Path planning; Continuous fiber; Geometric features; Tensile property; CONTINUOUS CARBON; PERFORMANCE;
D O I
10.1016/j.compositesb.2024.111885
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Three-dimensional (3D) printing technology for continuous fiber reinforced thermoplastic composites (C-FRTP), capable of rapid manufacturing of lightweight components with intricate geometric features, has emerged as one of the most promising technologies in the field of advanced composite manufacturing. Path planning is a crucial step for determining the fabrication quality of C-FRTP components. This study proposed a new 3D printing path planning strategy driven by the geometric features and tensile properties of C-FRTP components. The strategy employed the properties of the Euler graph to generate the continuous full-field filling paths, ensuring the geometric features of the target components. The intersections were scattered along the printing path to enhance the tensile strength. The feasibility and advantages of the new path planning strategy were validated by comparative experiments with different printing paths. The results indicated that the new strategy not only achieved the geometric features of the target components but significantly enhanced their tensile strength. Using the printing path generated by the new path planning strategy, the tensile strength of specimens featuring mounting holes reached 349.4 MPa, which was only about 4.1 % lower than the tensile strength of continuous fibers at straight paths. Compared to the existing contour-parallel path, the new strategy in this work improved the tensile properties by about 40.9 %. The new path planning strategy proposed in this study shows great potential to design and fabricate C-FRTP components with enhanced mechanical properties for practical applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance
    Yang, Chuncheng
    Tian, Xiaoyong
    Liu, Tengfei
    Cao, Yi
    Li, Dichen
    RAPID PROTOTYPING JOURNAL, 2017, 23 (01) : 209 - 215
  • [2] Process Evaluation, Tensile Properties and Fatigue Resistance of Chopped and Continuous Fiber Reinforced Thermoplastic Composites by 3D Printing
    Chen, Wei
    Zhang, Qiuju
    Cao, Han
    Yuan, Ye
    JOURNAL OF RENEWABLE MATERIALS, 2022, 10 (02) : 329 - 358
  • [3] 3D printing of continuous fiber reinforced diamond cellular structural composites and tensile properties
    Dong, Ke
    Liu, Liangqiang
    Huang, Xiayan
    Xiao, Xueliang
    COMPOSITE STRUCTURES, 2020, 250
  • [4] 3D compaction printing of a continuous carbon fiber reinforced thermoplastic
    Ueda, Masahito
    Kishimoto, Shun
    Yamawaki, Masao
    Matsuzaki, Ryosuke
    Todoroki, Akira
    Hirano, Yoshiyasu
    Le Duigou, Antoine
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 137 (137)
  • [5] Effect of fibre arrangements on tensile properties of 3D printed continuous fibre-reinforced thermoplastic composites
    Chen, Wei
    Zhang, Qiuju
    Cao, Han
    Yuan, Ye
    PLASTICS RUBBER AND COMPOSITES, 2022, 51 (02) : 85 - 97
  • [6] Process evaluation, tensile properties, mathematical models, and fracture behavior of 3D printed continuous fiber reinforced thermoplastic composites
    Chen, Wei
    Zhang, Qiuju
    Cao, Han
    Yuan, Ye
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2021, 40 (21-22) : 845 - 863
  • [7] Research Status of and Prospects for 3D Printing for Continuous Fiber-Reinforced Thermoplastic Composites
    Yang, Yuan
    Yang, Bo
    Chang, Zhengping
    Duan, Jihao
    Chen, Weihua
    POLYMERS, 2023, 15 (17)
  • [8] Design and 3D printing of continuous fiber reinforced heterogeneous composites
    Hou, Zhanghao
    Tian, Xiaoyong
    Zhang, Junkang
    Zhe, Lu
    Zheng, Ziqi
    Li, Dichen
    Malakhov, Andrei, V
    Polilov, Alexander N.
    COMPOSITE STRUCTURES, 2020, 237
  • [9] 3D printing of continuous fiber-reinforced thermoset composites
    He, Xu
    Ding, Yuchen
    Lei, Zepeng
    Welch, Sam
    Zhang, Wei
    Dunn, Martin
    Yu, Kai
    ADDITIVE MANUFACTURING, 2021, 40
  • [10] Load-dependent path planning method for 3D printing of continuous fiber reinforced plastics
    Wang, Ting
    Li, Nanya
    Link, Guido
    Jelonnek, John
    Fleischer, Juergen
    Dittus, Joerg
    Kupzik, Daniel
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 140