Multi-step wind energy forecasting in the Mexican Isthmus using machine and deep learning

被引:0
|
作者
Galarza-Chavez, Angel A. [1 ]
Martinez-Rodriguez, Jose L. [2 ]
Dominguez-Cruz, Rene Fernando [1 ]
Lopez-Garza, Esmeralda [1 ]
Rios-Alvarado, Ana B. [2 ]
机构
[1] Autonomous Univ Tamaulipas, UAM Reynosa Rodhe, Reynosa, Tamaulipas, Mexico
[2] Autonomous Univ Tamaulipas, Fac Engn & Sci, Victoria, Tamaulipas, Mexico
关键词
Deep learning; Machine learning; Wind energy forecasting; Renewable energies; Wind farms; POWER; MODELS; OAXACA;
D O I
10.1016/j.egyr.2024.11.074
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wind energy has gained more presence in Mexico, specifically in the Isthmus region of Oaxaca. Due to the intermittency of environmental conditions, predicting power generation across various wind farms in the area is essential for making informed decisions. However, there is currently a lack of strategies that provide energy predictions for wind farms in this region over a specific period, particularly using a multi-step forecasting approach. This paper proposes a methodology and implementation for forecasting energy generation in wind farms within the Isthmus region. The methodology includes stages for data analysis and exploration, preprocessing, configuring regression models, evaluation and simulation, and multi-step forecasting (24-hour period). Five regression algorithms were analyzed: Linear Regression (LR), Support Vector Regression (SVR), Multiple-SVR (M-SVR), General Regression Neural Network (GRNN), and Long Short-Term Memory (LSTM). Additionally, multi-step forecasting strategies such as recursive and Multi-Input Multi-Output (MIMO) were examined. Among these models, the LR and M-SVR models using the MIMO strategy yielded the best results in this study, achieving a Root Mean Square Error (RMSE) of 0.10 and a Mean Absolute Error (MAE) of 0.08. We also analyze daily forecasts to demonstrate the monthly model performance fluctuations during a whole year. Furthermore, the proposed model is based on actual wind conditions in the area, enhancing its effectiveness and feasibility.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [41] Comparison of multi-step forecasting methods for renewable energy
    Dolgintseva, E.
    Wu, H.
    Petrosian, O.
    Zhadan, A.
    Allakhverdyan, A.
    Martemyanov, A.
    ENERGY SYSTEMS-OPTIMIZATION MODELING SIMULATION AND ECONOMIC ASPECTS, 2024,
  • [42] A bi-level mode decomposition framework for multi-step wind power forecasting using deep neural network
    Wu, Jingxuan
    Li, Shuting
    Vasquez, Juan C.
    Guerrero, Josep M.
    ENERGY CONVERSION AND MANAGEMENT-X, 2024, 23
  • [43] Adaptive multi-step ahead forecasting of machine tool chatter
    Zhou, Xiaoqin
    Yu, Junyi
    Wang, Wencai
    Kong, Fansen
    Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 34 (05): : 55 - 59
  • [44] Deterministic and probabilistic multi-step forecasting for short-term wind speed based on secondary decomposition and a deep learning method
    Xiang, Ling
    Li, Jingxu
    Hu, Aijun
    Zhang, Yue
    ENERGY CONVERSION AND MANAGEMENT, 2020, 220
  • [45] Multi-Step Ahead Probabilistic Forecasting of Daily Streamflow Using Bayesian Deep Learning: A Multiple Case Study
    Ghobadi, Fatemeh
    Kang, Doosun
    WATER, 2022, 14 (22)
  • [46] Optimizing multi-step wind power forecasting: Integrating advanced deep neural networks with stacking-based probabilistic learning
    Takara, Lucas de Azevedo
    Teixeira, Ana Clara
    Yazdanpanah, Hamed
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    APPLIED ENERGY, 2024, 369
  • [47] A noise resilient multi-step ahead deep learning forecasting technique for solar energy centered generation of green hydrogen
    Sareen, Karan
    Panigrahi, Bijaya Ketan
    Shikhola, Tushar
    Sharma, Rajneesh
    Tripathi, Ravi Nath
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 90 : 666 - 679
  • [48] Multi-step estimation for forecasting
    Clements, MP
    Hendry, DF
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 1996, 58 (04) : 657 - +
  • [49] Comparing multi-step ahead building cooling load prediction using shallow machine learning and deep learning models
    Chalapathy, Raghavendra
    Khoa, Nguyen Lu Dang
    Sethuvenkatraman, Subbu
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2021, 28
  • [50] Machine-learning-based multi-step heat demand forecasting in a district heating system
    Potocnik, Primoz
    Skerl, Primoz
    Govekar, Edvard
    ENERGY AND BUILDINGS, 2021, 233