Pore-scale study of liquid water transport in gas diffusion layers with in-plane non-uniform distributed pore size of polymer electrolyte membrane fuel cell

被引:0
|
作者
Lai, Tao [1 ]
Qu, Zhiguo [1 ]
Zhang, Jianfei [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermo Fluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Gas diffusion layer; Liquid water directional flow; Lattice Boltzmann method; In-plane distributed pore size; Effective gas diffusion coefficient; PERFORMANCE; GDL; SIMULATION; PRESSURE; MODEL;
D O I
10.1016/j.apenergy.2024.124933
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Timely removal of liquid water and the supply of the reaction gas in the gas diffusion layer (GDL) plays a critical role in improving the performance of polymer electrolyte membrane fuel cells (PEMFCs). Modifying the design of the GDL structure is an effective strategy for regulating the percolation process of liquid water and the supply of reaction gas. In this study, several GDLs with in-plane nonuniformly distributed pore sizes were designed to construct an ordered liquid water transport pathway. Two pore-size patterns with a "V" shape and an inverted "V" shape were designed through the orientation control of fiber distribution. In the inverted V-shaped pattern, the pore size exhibited a wave crest distribution along the in-plane direction, whereas, in the V-shaped pattern structure, the pore size was troughed along the in-plane direction. The three-dimensional (3D) multiphase Lattice Boltzmann method (LBM) and 3D diffusion LBM were used to investigate the liquid water percolation process and the reaction gas transport process in the GDL, respectively. The numerical results indicated that liquid water tends to concentrate in layers with macropores in the nonuniform GDL. Compared with the uniformly distributed GDL, these two pore size patterns can accelerate the drainage velocity and lower the water content. The reversed V-shaped pattern was further optimized to obtain the optimal width of the layers with macrospores. The results showed that a length of 96 mu m is recommended to balance the concentrated effect and low-concentration areas. Under dry conditions, the gas transport capacity was insensitive to pore size distribution, whereas, under partially saturated conditions, both the V-shaped and inverted V-shaped structures of a nonuniform design weakened the impeding effect of liquid water on the gas supply. Moreover, the effective gas diffusion coefficient of the nonuniform study can reach up to 3.85 times of the uniform structure. This work promotes the understanding of different in-plane distributed pore size styles on the water percolation behavior in the GDL, thereby contributing to the optimal design of the GDL and PEMFCs.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Stochastic modeling of polymer electrolyte membrane fuel cell gas diffusion layers - Part 2: A comprehensive substrate model with pore size distribution and heterogeneity effects
    Hinebaugh, J.
    Gostick, J.
    Bazylak, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (24) : 15872 - 15886
  • [32] Prevention of the water flooding by micronizing the pore structure of gas diffusion layer for polymer electrolyte fuel cell
    Hiramitsu, Yusuke
    Sato, Hitoshi
    Honi, Michio
    JOURNAL OF POWER SOURCES, 2010, 195 (17) : 5543 - 5549
  • [33] Pore-Scale Investigation of Mass Transport in Compressed Cathode Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells
    Wang, Hao
    Yang, Guogang
    Li, Shian
    Shen, Qiuwan
    Su, Fengmin
    Zhang, Guoling
    Li, Zheng
    Jiang, Ziheng
    Liao, Jiadong
    Sun, Juncai
    CRYSTALS, 2023, 13 (10)
  • [34] Steady saturation distribution in hydrophobic gas-diffusion layers of polymer electrolyte membrane fuel cells: A pore-network study
    Lee, Kyu-Jin
    Nam, Jin Hyun
    Kim, Charn-Jung
    JOURNAL OF POWER SOURCES, 2010, 195 (01) : 130 - 141
  • [35] Mass Transport Limitations of Water Evaporation in Polymer Electrolyte Fuel Cell Gas Diffusion Layers
    Mularczyk, Adrian
    Michalski, Andreas
    Striednig, Michael
    Herrendoerfer, Robert
    Schmidt, Thomas J.
    Buechi, Felix N.
    Eller, Jens
    ENERGIES, 2021, 14 (10)
  • [36] Pore network modeling of liquid water and oxygen transport through the porosity-graded bilayer gas diffusion layer of polymer electrolyte membrane fuel cells
    Zhan, Ninghua
    Wu, Wei
    Wang, Shuangfeng
    ELECTROCHIMICA ACTA, 2019, 306 : 264 - 276
  • [37] Pore-scale study of pore-ionomer interfacial reactive transport processes in proton exchange membrane fuel cell catalyst layer
    Chen, Li
    Zhang, Ruiyuan
    Kang, Qinjun
    Tao, Wen-Quan
    CHEMICAL ENGINEERING JOURNAL, 2020, 391
  • [38] Pore-scale study of pore-ionomer interfacial reactive transport processes in proton exchange membrane fuel cell catalyst layer
    Chen, Li
    Zhang, Ruiyuan
    Kang, Qinjun
    Tao, Wen-Quan
    Chen, Li (lichennht08@mail.xjtu.edu.cn), 1600, Elsevier B.V. (391):
  • [39] Woven gas diffusion layers for polymer electrolyte membrane fuel cells: Liquid water transport and conductivity trade-offs
    Hasanpour, S.
    Ahadi, M.
    Bahrami, M.
    Djilali, N.
    Akbari, M.
    JOURNAL OF POWER SOURCES, 2018, 403 : 192 - 198
  • [40] Experimental and pore-level numerical investigation of water evaporation in gas diffusion layers of polymer electrolyte fuel cells
    Safi, Mohammad Amin
    Prasianakis, Nikolaos I.
    Mantzaras, John
    Lamibrac, Adrien
    Buchi, Felix N.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 115 : 238 - 249