Digitized multi-exponential deep-level transient spectroscopy (DLTS) using the padé-Laplace algorithm

被引:0
作者
Martin, Patrick [1 ]
Matouat, Abdelaziz El [2 ]
Lefebvre, Jean-Luc [3 ]
Descamps, Philippe [1 ]
机构
[1] Normandie Université-ENSICAEN-UMR 6508 LaMIPS, Caen CEDEX 4
[2] LMAH, University of Le Havre
[3] Presto-Engineering, Caen 14000
关键词
DLTS; Multi-exponential transient; Padé-Laplace;
D O I
10.4028/www.scientific.net/AMR.710.575
中图分类号
学科分类号
摘要
We apply the Padé-Laplace algorithm to automatically extract from DLTS multi-exponential transient decay measurements, the amplitude and the time constant of each discrete exponential component as well as the number of components without a priori assumption. Then, after setting restriction on the resolution of the multi-exponential problem itself due to noise, we present the field of this method numerical validity. Finally, the performance obtained on real signals is shown. © (2013) Trans Tech Publications, Switzerland.
引用
收藏
页码:575 / 578
页数:3
相关论文
共 9 条
[1]  
Lang D.V., Journal of Applied Physics, 45, pp. 3023-3032, (1974)
[2]  
Istratov A.A., Vyvenko O.F., Review of Scientific Instruments, 70, 2, pp. 1233-1257, (1999)
[3]  
Yeramian E., Claverie P., Nature, 326, pp. 169-174, (1987)
[4]  
Claverie P., Denis A., Yeramian E., North-Holland, Amsterdam, 9, pp. 247-299, (1989)
[5]  
Nolte D.D., Haller E.E., Journal of Applied Physics, 62, pp. 900-906, (1987)
[6]  
Brezinsky C., Birkhuser Verlag, (1980)
[7]  
Younan N.H., Lee H.S., Mazzola M.S., Review of Scientific Instruments, 72, pp. 1800-1805, (2001)
[8]  
Lanczos C., Applied Physics, pp. 272-280, (1957)
[9]  
Brezinsky C., Birkhuser Verlag, (1980)