Thermal challenges in lithium-ion battery technology: Investigating performance and thermal stability

被引:0
作者
Maher, Kenza [1 ]
Boumaiza, Ameni [1 ]
机构
[1] Hamad Bin Khalifa Univ HBKU, Qatar Fdn QF, Qatar Environm & Energy Res Inst QEERI, Doha, Qatar
关键词
Lithium-ion batteries; Cycle aging; Thermal aging; Battery degradation; Thermodynamics; SOLID-ELECTROLYTE INTERPHASE; ELECTRIC VEHICLES; DEGRADATION; GENERATION; MECHANISMS; RUNAWAY; ISSUES;
D O I
10.1016/j.est.2025.115396
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Due to their remarkable energy density and prolonged lifespan, lithium-ion batteries (LiB) are indispensable in various applications, such as energy storage systems and electric vehicles. However, ensuring the safety and reliability of these batteries in desert environments presents significant challenges due to high temperatures, pervasive dust, and limited cooling mechanisms. Elevated temperatures exacerbate internal resistance and accelerate chemical reactions within the battery, leading to heat generation, performance loss, and potential safety risks, including thermal runaway. This study investigates the thermal challenges in LiB technology, focusing on the performance and degradation of lithium cobalt oxide (LCO) and graphite full cells under prolonged cycling at elevated temperatures of 55 degrees C. Results show a significant reduction in discharge capacity, decreasing from 38.12 mAh in the first cycle to 24.36 mAh after 350 cycles at 55 degrees C, corresponding to a 36.1 % capacity loss. This degradation at 55 degrees C after 350 cycles mirrors the capacity loss observed at 25 degrees C after 1000 cycles, illustrating the accelerated effects of higher temperatures. Open circuit voltage (OCV) profiles and entropy measurements reveal notable variations and phase transitions in the cells' internal properties, especially around specific states of charge (SOC) and OCV regions. These findings underscore the critical role of temperature in the aging process and highlight the necessity of effective temperature control and management to optimize the lifespan and performance of lithium-ion batteries in high-temperature environments.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Thermal stability of lithium-ion battery subjected to inhomogeneous aging
    Liu, Jialong
    Zhou, Longfei
    Zhang, Yun
    He, Tengfei
    Wang, Zhirong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 180 : 992 - 1002
  • [2] A thermal performance management system for lithium-ion battery packs
    Al-Zareer, Maan
    Dincer, Ibrahim
    Rosen, Marc A.
    APPLIED THERMAL ENGINEERING, 2020, 165
  • [3] Challenges and Innovations of Lithium-Ion Battery Thermal Management Under Extreme Conditions: A Review
    Liu, Siyi
    Zhang, Guangsheng
    Wang, Chao-Yang
    ASME JOURNAL OF HEAT AND MASS TRANSFER, 2023, 145 (08):
  • [4] Thermal studies of a lithium-ion battery
    Saito, Y
    Kanari, K
    Takano, K
    JOURNAL OF POWER SOURCES, 1997, 68 (02) : 451 - 454
  • [5] Morphology, Structure, and Thermal Stability Analysis of Aged Lithium-Ion Battery Materials
    Wang, Cong-jie
    Zhu, Yan-li
    Gao, Fei
    Wang, Kang-kang
    Zhao, Peng-long
    Meng, Qing-fen
    Wu, Qi-bing
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (14)
  • [6] Electrochemical and thermal modeling of lithium-ion batteries: A review of coupled approaches for improved thermal performance and safety lithium-ion batteries
    Alkhedher, Mohammad
    Al Tahhan, Aghyad B.
    Yousaf, Jawad
    Ghazal, Mohammed
    Shahbazian-Yassar, Reza
    Ramadan, Mohamad
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [7] Progress in Thermal Modeling for Lithium-ion Battery
    Ma, Xuezhi
    Zhu, Chenyou
    Xie, Zhili
    Xie, Chaoxiang
    Wang, Weiling
    Zheng, Jiechang
    Mu, Daobin
    Wu, Borong
    JOINT INTERNATIONAL CONFERENCE ON ENERGY, ECOLOGY AND ENVIRONMENT ICEEE 2018 AND ELECTRIC AND INTELLIGENT VEHICLES ICEIV 2018, 2018,
  • [8] Calculation and Analysis of Thermal Safety Performance of the Lithium-ion Power Battery
    Li, Zheng
    Xing, Dianhui
    Gao, Yue
    ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2016, 83 (1-2): : 54 - 60
  • [9] Effects of Fast Charging Modes on Thermal Performance of Lithium-Ion Battery
    Wang, Wentao
    Wang, Yanan
    Ni, Ruke
    Xie, Zongfa
    ENERGY TECHNOLOGY, 2022, 10 (11)
  • [10] Battery material thermal instability and side reaction for lithium-ion battery thermal runaway: A short review
    Ding, Yan
    Lu, Li
    Zhang, Huangwei
    FUNCTIONAL MATERIALS LETTERS, 2023, 16 (03N04)