Controlled fabrication of hierarchical porous carbon nanospheres with high doped nitrogen content for high-performance adsorbent of biomacromolecule

被引:0
|
作者
Xue, Yao [1 ]
Wang, Zhiming [1 ]
Zhang, Yanfeng [2 ]
Zhu, Zhu [1 ]
Li, Xiaoyu [3 ]
Du, Xin [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Beijing Key Lab Bioengn & Sensing Technol, Beijing 100083, Peoples R China
[2] Sichuan Police Coll, Intelligent Policing Key Lab Sichuan Prov, Luzhou 646000, Peoples R China
[3] Chinese Acad Sci, Univ Chinese Acad Sci,Inst Proc Engn, Natl Engn Res Ctr Green Recycling Strateg Met Reso, Key Lab Green Proc & Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Kinetic self-assembly; Hierarchical porous carbon; Tunable pore; Nitrogen doping; Protein adsorption; OXYGEN REDUCTION; ADSORPTION; ELECTRONEGATIVITIES; ELECTROCATALYST; PHOSPHORUS; PORPHYRIN; BOVINE; BEADS; OXIDE;
D O I
10.1016/j.carbon.2024.119787
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Constructing nitrogen-doped porous carbons with high specific surface area, rapid mass transfer channels, and positive charge is a crucial requirement for high-performance adsorbents. Herein, by the kinetic self-assembly synthesis strategy, we prepared nitrogen-doped hierarchical porous carbon spheres (N-HPCS) with adjustable pore structure, high specific surface area, and high nitrogen doping content (8.88 %). By using ethylenediamine as an assisted polymerization and assembly agent, the hydrolysis and condensation rate of tetraethyl orthosilicate (TEOS) as the silica source and the condensation rate of 3-aminophenol and formaldehyde as the phenolic resin precursor were controlled by adjusting ammonia volume as the alkaline catalyst to tune kinetic self-assembly of silica and phenolic resin components, thus achieving their simultaneous or sequential nucleus and growth. After carbonization and selective silica etching, three types of carbon nanospheres with center-radial pores, hollow center-radial pores and hollow structure were obtained. High nitrogen doping content endowed the nanospheres with positive charge. Through adsorption experiments on the bovine serum albumin (BSA) and Hemoglobin (Hb) as typical biological macromolecules, hollow carbon nanospheres with center-radial pores exhibited excellent adsorption performance for BSA(622.34 mg g- 1 ) and Hb(759.96 mg g- 1 ). Our fabricated N-HPCS may become a potential candidate for high-performance adsorption materials.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Hierarchical nitrogen-doped porous carbon/carbon nanotube composites for high-performance supercapacitor
    Zhou, Yibei
    Song, Zhicui
    Hu, Qiang
    Zheng, Qiaoji
    Jiang, Na
    Xie, Fengyu
    Jie, Wenjing
    Xu, Chenggang
    Lin, Dunmin
    SUPERLATTICES AND MICROSTRUCTURES, 2019, 130 : 50 - 60
  • [2] Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization
    Liu, Xiaojun
    Liu, Hui
    Mi, Mengjuan
    Kong, Weiqing
    Ge, Yongjie
    Hu, Jiawen
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 224 : 44 - 50
  • [3] Nitrogen-doped hierarchical porous carbon for supercapacitors with high rate performance
    Wang, Le
    Zhu, Qizhen
    Zhao, Jiashun
    Guan, Yibiao
    Liu, Junjie
    An, Zhongxun
    Xu, Bin
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 279 : 439 - 445
  • [4] Preparation of nitrogen-doped hierarchical porous carbon electrodes for high performance capacitive deionization
    Liu, Shi
    Wang, Qiuze
    Li, Bingjian
    Zhou, Yinjie
    Gong, Tianyang
    Li, Jinchun
    IONICS, 2023, 29 (07) : 2935 - 2945
  • [5] Nitrogen-Doped Hierarchical Porous Carbon Derived from Coal for High-Performance Supercapacitor
    Cai, Leiming
    Zhang, Yanzhe
    Ma, Rui
    Feng, Xia
    Yan, Lihua
    Jia, Dianzeng
    Xu, Mengjiao
    Ai, Lili
    Guo, Nannan
    Wang, Luxiang
    MOLECULES, 2023, 28 (09):
  • [6] Facile synthesis of nitrogen-doped porous carbon for high-performance supercapacitors
    Yang, Wang
    Yang, Wu
    Kong, Lina
    Song, Ailing
    Qin, Xiujuan
    RSC ADVANCES, 2017, 7 (87): : 55257 - 55263
  • [7] Fabrication of nitrogen and sulfur co-doped graphene nanoribbons with porous architecture for high-performance supercapacitors
    Gopalsamy, Karthikeyan
    Balamurugan, Jayaraman
    Tran Duy Thanh
    Kim, Nam Hoon
    Lee, Joong Hee
    CHEMICAL ENGINEERING JOURNAL, 2017, 312 : 180 - 190
  • [8] Meso/micropore-controlled hierarchical porous carbon derived from activated biochar as a high-performance adsorbent for copper removal
    Dinh Viet Cuong
    Liu, Nei-Ling
    Viet Anh Nguyen
    Hou, Chia-Hung
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 692 : 844 - 853
  • [9] Nitrogen-Doped Hierarchical Porous Activated Carbon Derived from Paddy for High-Performance Supercapacitors
    Yuan, Yudan
    Sun, Yi
    Feng, Zhichen
    Li, Xingjian
    Yi, Ruowei
    Sun, Wei
    Zhao, Cezhou
    Yang, Li
    MATERIALS, 2021, 14 (02) : 1 - 12
  • [10] Buckwheat husk-derived hierarchical porous nitrogen-doped carbon materials for high-performance symmetric supercapacitor
    Lulu Qiang
    Zhongai Hu
    Zhimin Li
    Yuying Yang
    Xiaotong Wang
    Yi Zhou
    Xinyuan Zhang
    Wenbin Wang
    Qian Wang
    Journal of Porous Materials, 2019, 26 : 1217 - 1225