Effect of palladium core size on the activity and durability of Pt-Monolayer electrocatalysts for oxygen reduction reaction

被引:0
|
作者
Choi, Jiye [1 ,2 ]
Lee, Eunjik [1 ,3 ,4 ]
Woo, Seung-min [5 ]
Whang, Youngjoo [1 ]
Kwon, Yongmin [1 ]
Seo, Minho [5 ]
Cho, Eunae [2 ]
Park, Gu-Gon [1 ,3 ,4 ]
机构
[1] Korea Inst Energy Res KIER, Hydrogen Fuel Cell Lab, 152 Gajeong Ro, Daejeon 34129, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 305701, South Korea
[3] Chungnam Natl Univ, Grad Sch Energy Sci & Technol GEST, 99 Daehak Ro, Daejeon 34134, South Korea
[4] Univ Sci & Technol, Dept Energy Engn, 217 Gajeong Ro, Daejeon 34113, South Korea
[5] Pukyong Natl Univ, Dept Nanotechnol Engn, 45 Yongso Ro, Busan 48547, South Korea
基金
新加坡国家研究基金会;
关键词
Platinum; Palladium; Core-shell structure; Electrocatalyst; Oxygen reduction reaction; Fuel cells; TOTAL-ENERGY CALCULATIONS; SHELL NANOPARTICLES; ELECTROCHEMICAL STABILITY; PLATINUM; OXIDATION; MECHANISMS; CATALYSTS; METALS; STRAIN;
D O I
10.1016/j.apsusc.2025.162477
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pd-based core-shell catalysts coated with a Pt monolayer (ML) are promising catalysts in polymer electrolyte membrane fuel cells. However, the effect of Pd core-size on the performance of these electrocatalysts remains underexplored. Therefore, this study systematically investigated the effect of Pd core-size on the electrochemical activity and durability of Pt ML electrocatalysts. We synthesized Pd@Pt/C catalysts using a CO-assisted reduction method, and Pd core sizes were precisely controlled at 3.8 nm and 4.9 nm by adjusting the pH levels. Subsequently, a Pt ML was deposited through copper underpotential deposition, yielding conformal Pt layers on the Pd cores. Pd@Pt/C with the smaller Pd core (PdS@Pt/C) demonstrated superior initial oxygen reduction reaction activity. However, its electrochemical active surface area (ECSA) and mass activity (MA) (41.1 % and 48.5 %, respectively) substantially decreased after an accelerated stress test (AST) with 50 k cycles. This can be attributed to Pt-shell thickening and Pd leaching. In contrast, Pd@Pt/C with the larger Pd core (PdL@Pt/C) demonstrated superior durability, with minimal ECSA (33.8 %) and MA (25.6 %) losses and stable Pt-shell thickness. Based on the ab-initio approaches regarding oxygen adsorption energy and Pt dissolution, the activity and durability are enhanced as (i) the overall particle size increases, (ii) Pd core size increases, and (iii) the number of Pt layers on the Pd surface decreases. These findings highlight the pivotal role of the core size in optimizing the performance of core-shell catalysts, wherein larger cores enhance durability of the shell material by mitigating core leaching and maintaining shell integrity.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Platinum-monolayer electrocatalysts Palladium interlayer on IrCo alloy core improves activity in oxygen-reduction reaction
    Gong, Kuanping
    Chen, Wei-Fu
    Sasaki, Kotaro
    Su, Dong
    Vukmirovic, Miomir B.
    Zhou, Weiping
    Izzo, Elise L.
    Perez-Acosta, Carmen
    Hirunsit, Pussana
    Balbuena, Perla B.
    Adzic, Radoslav R.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2010, 649 (1-2) : 232 - 237
  • [2] Pt monolayer shell on hollow Pd core electrocatalysts: scale up synthesis, structure, and activity for the oxygen reduction reaction
    Vukmirovic, Miomir B.
    Zhang, Yu
    Wang, Jia X.
    Buceta, David
    Wu, Lijun
    Adzic, Radoslav R.
    JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2013, 78 (12) : 1983 - 1992
  • [3] Correlation between theoretical descriptor and catalytic oxygen reduction activity of graphene supported palladium and palladium alloy electrocatalysts
    Seo, Min Ho
    Choi, Sung Mook
    Lee, Dong Un
    Kim, Won Bae
    Chen, Zhongwei
    JOURNAL OF POWER SOURCES, 2015, 300 : 1 - 9
  • [4] Climbing the Activity Volcano: Core-Shell Ru@Pt Electrocatalysts for Oxygen Reduction
    Jackson, Ariel
    Viswanathan, Venkatasubramanian
    Forman, Arnold J.
    Larsen, Ask H.
    Norskov, Jens K.
    Jaramillo, Thomas F.
    CHEMELECTROCHEM, 2014, 1 (01): : 67 - 71
  • [5] Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction
    Sasaki, Kotaro
    Naohara, Hideo
    Choi, YongMan
    Cai, Yun
    Chen, Wei-Fu
    Liu, Ping
    Adzic, Radoslav R.
    NATURE COMMUNICATIONS, 2012, 3
  • [6] Core-Shell Nanostructured Au@NimPt2 Electrocatalysts with Enhanced Activity and Durability for Oxygen Reduction Reaction
    Shen, Liu-Liu
    Zhang, Gui-Rong
    Miao, Shu
    Liu, Jingyue
    Xu, Bo-Qing
    ACS CATALYSIS, 2016, 6 (03): : 1680 - 1690
  • [7] Oxygen Reduction Reaction Activity and Durability of Pt Catalysts Supported on Titanium Carbide
    Chiwata, Morio
    Kakinuma, Katsuyoshi
    Wakisaka, Mitsuru
    Uchida, Makoto
    Deki, Shigehito
    Watanabe, Masahiro
    Uchida, Hiroyuki
    CATALYSTS, 2015, 5 (02): : 966 - 980
  • [8] Pt-Ni Aerogels as Unsupported Electrocatalysts for the Oxygen Reduction Reaction
    Henning, Sebastian
    Kuehn, Laura
    Herranz, Juan
    Durst, Julien
    Binninger, Tobias
    Nachtegaal, Maarten
    Werheid, Matthias
    Liu, Wei
    Adam, Marion
    Kaskel, Stefan
    Eychmueller, Alexander
    Schmidt, Thomas J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (09) : F998 - F1003
  • [9] Carbon supported Pt-Y electrocatalysts for the oxygen reduction reaction
    Jeon, Min Ku
    McGinn, Paul J.
    JOURNAL OF POWER SOURCES, 2011, 196 (03) : 1127 - 1131
  • [10] Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts
    Zhang, Yafeng
    Qin, Juan
    Leng, Deying
    Liu, Qianru
    Xu, Xiaoyan
    Yang, Bing
    Yin, Feng
    JOURNAL OF POWER SOURCES, 2021, 485