Therapeutic advances of magnetic nanomaterials in chronic wound healing

被引:0
作者
Li, Jingyi [1 ,2 ]
Yang, Yaqi [1 ,2 ]
Zhang, Guofang [3 ,4 ]
Sun, Jianfei [5 ]
Li, Yang [3 ,4 ]
Song, Bing [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Inst Biomed & Hlth Engn, Shenzhen 518055, Peoples R China
[2] China Med Univ, Hosp 1, Dept Dermatol, Shenyang 110001, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Lab Immunol & Nanomed, Shenzhen 518055, Peoples R China
[4] Chinese Acad Sci, Shenzhen Inst Adv Technol, China Italy Joint Lab Pharmacobiotechnol Med Immun, Lab Inflammat & Vaccines, Shenzhen 518055, Peoples R China
[5] Southeast Univ, Sch Biol Sci & Med Engn, State Key Lab Digital Med Engn, Jiangsu Key Lab Biomat & Devices, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
Chronic wounds; Nanomaterials; Magnetic nanoparticles; Magnetic hydrogels; Magnetic Micro/nanorobots; Wound healing; IRON-OXIDE NANOPARTICLES; DRUG-DELIVERY-SYSTEMS; STAPHYLOCOCCUS-AUREUS; FE3O4; NANOPARTICLES; ENDOTHELIAL-CELLS; CORONA FORMATION; PROTEIN CORONA; STEM-CELLS; FIELD; HYPERTHERMIA;
D O I
10.1016/j.nantod.2024.102554
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Millions of patients worldwide suffer from chronic and non-healing wounds, leading to hospitalizations, infections, and even fatalities. Despite advances in clinical therapies, wound management remains a significant challenge due to the complex wound environment and increasing antibiotic resistance. Consequently, there is an urgent need for innovative strategies to address chronic wound treatment. Among the emerging approaches, nanomaterial-based therapeutic systems, especially magnetically responsive strategies, are gaining considerable attention. Upon exposure to an external magnetic field, magnetic nanomaterials (MNMs) can induce electromagnetic, magnetothermal, and magnetomechanical effects at the wound site. Additionally, compared with other exogenous stimuli-responsive therapies, magnetic fields offer distinct advantages, including noninvasiveness, deep tissue penetration, and high sensitivity for remote control and actuation of cells. In this review, we first outline the fundamental properties, design strategies, and biological mechanisms of MNMs and discuss their various applications in chronic wound therapy, such as antibacterial effects, magnetothermal therapy, controlled drug delivery, mechanical cell manipulation, wireless electrical stimulation, and dualstimulation approaches. We then highlight recent advancements in MNMs for wound monitoring and management, including magnetic nanorobots and "smart dressings". Finally, we offer our insights on the current challenges of MNMs and propose future directions to enhance their clinical translation. Overall, this review emphasizes the potential of magnetic nanomaterial-based therapeutic systems to transform the landscape of chronic wound management.
引用
收藏
页数:25
相关论文
共 192 条
[1]   Magnetic Glycol Chitin-Based Hydrogel Nanocomposite for Combined Thermal and D-Amino-Acid-Assisted Biofilrn Disruption [J].
Abenojar, Eric C. ;
Wickramasinghe, Sameera ;
Ju, Minseon ;
Uppaluri, Sarika ;
Klika, Alison ;
George, Jaiben ;
Barsoum, Wael ;
Frangiamore, Salvatore J. ;
Higuera-Rueda, Carlos A. ;
Samia, Anna Cristina S. .
ACS INFECTIOUS DISEASES, 2018, 4 (08) :1246-1256
[2]   Evaluating a simple blending approach to prepare magnetic and stimuli-responsive composite hydrogel particles for application in biomedical field [J].
Ahmad, H. ;
Sultana, M. S. ;
Alam, M. A. ;
Rahman, M. M. ;
Tauer, K. ;
Gafur, M. A. ;
Sharafat, M. K. .
EXPRESS POLYMER LETTERS, 2016, 10 (08) :664-678
[3]   Investigation of the displacement-based seismic performance of geogrid earth-retaining walls using three-dimensional finite element modeling [J].
Akbar, Muhammad ;
Huali, Pan ;
Ou, Guoqiang ;
Arshid, Muhammad Usman ;
Ahmed, Bilal ;
Umar, Tariq .
RESULTS IN ENGINEERING, 2024, 21
[4]   Emerging Application of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer [J].
Alromi, Dalal A. ;
Madani, Seyed Yazdan ;
Seifalian, Alexander .
POLYMERS, 2021, 13 (23)
[5]   Mild magnetic nanoparticle hyperthermia enhances the susceptibility of Staphylococcus aureus biofilm to antibiotics [J].
Alumutairi, Layla ;
Yu, Bing ;
Filka, Mitchell ;
Nayfach, Joseph ;
Kim, Min-Ho .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2020, 37 (01) :66-75
[6]   Mechanical stimuli-driven cancer therapeutics [J].
An, Jusung ;
Hong, Hyunsik ;
Won, Miae ;
Rha, Hyeonji ;
Ding, Qihang ;
Kang, Nayeon ;
Kang, Heemin ;
Kim, Jong Seung .
CHEMICAL SOCIETY REVIEWS, 2023, 52 (01) :30-46
[7]   Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications [J].
Anderson, Simon D. ;
Gwenin, Vanessa V. ;
Gwenin, Christopher D. .
NANOSCALE RESEARCH LETTERS, 2019, 14 (1)
[8]   Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling [J].
Apopa, Patrick L. ;
Qian, Yong ;
Shao, Rong ;
Guo, Nancy Lan ;
Schwegler-Berry, Diane ;
Pacurari, Maricica ;
Porter, Dale ;
Shi, Xianglin ;
Vallyathan, Val ;
Castranova, Vincent ;
Flynn, Daniel C. .
PARTICLE AND FIBRE TOXICOLOGY, 2009, 6
[9]   Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts [J].
Arias, Sandra L. ;
Shetty, Akshath ;
Devorkin, Joshua ;
Allain, Jean-Paul .
ACTA BIOMATERIALIA, 2018, 77 :172-181
[10]   Magnetosome formation in prokaryotes [J].
Bazylinski, DA ;
Frankel, RB .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (03) :217-230