Dual-channel infrared OPO lidar optical system for remote sensing of greenhouse gases in the atmosphere: Design and characteristics

被引:0
作者
Sadovnikov, S.A. [1 ]
Yakovlev, S.V. [1 ]
Kravtsova, N.S. [1 ]
Romanovskii, O.A. [1 ]
Tuzhilkin, D.A. [1 ]
机构
[1] V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences, 1, Academician Zuev square, Tomsk
来源
Sensors International | 2025年 / 6卷
基金
俄罗斯科学基金会;
关键词
Atmosphere; DIAL; DOAS; Greenhouse gas; Lidar optical system; OPO; Remote sensing;
D O I
10.1016/j.sintl.2024.100307
中图分类号
学科分类号
摘要
Current global warming and climate change under the greenhouse effect call for a thorough understanding of the spatial distribution of greenhouse gases in different atmospheric layers. Lidar systems are the most effective for remote greenhouse gas monitoring. We design a two-channel infrared OPO lidar optical system for remote DIAL/DOAS sensing of carbon dioxide and water vapor in the atmosphere. In this work, optimal geometric parameters of the transceiving channel of the lidar optical system are chosen, a need to focus laser radiation at a distance of 1 km from an observation point is demonstrated, and numerical simulations confirm the possibility of detecting lidar signals ranging from 10−7 to 10−10 W in the informative spectral range 4800–5100 cm−1 (1960–2083 nm). Laboratory experiments with the main components of the lidar system with experimentally confirmed parameters, which simulate atmospheric measurements of CO2 absorption at a calibrated sensing wavelength of 2005 nm (4987 cm−1) (pressure of 1 atm; CO2 concentration corresponding to the midlatitude summer background atmosphere) in the informative spectral range of the lidar system, enable selecting a pair of wavelengths with resonant absorption of the target gas near 2005 nm to study the background state of the atmosphere in the surface layer. Efficiency of the lidar optical system is confirmed by in situ test experiments, where backscattering signals from a topographic target with an albedo of ∼0.15 spaced 168 m apart from an observer are recorded at 60 mV when operating along a horizontal atmospheric path. The lidar system we design can be used in measuring complexes at carbon test sites. It can also be used for atmospheric monitoring in industrial centers, at background measuring stations, and in swamp areas. © 2024 The Authors
引用
收藏
相关论文
共 51 条
  • [1] Fix A., Steinebach F., Wirth M., Schafler A., Ehret G., Development and application of an airborne differential absorption lidar for the simultaneous measurement of ozone and water vapor profiles in the tropopause region, Appl. Opt., 58, pp. 5892-5900, (2019)
  • [2] Aiuppa A., Fiorani L., Santoro S., Parracino S., D'Aleo R., Liuzzo M., Maio G., Nuvoli M., New advances in dial-lidar-based remote sensing of the volcanic CO<sub>2</sub> flux, Front. Earth Sci., 5, pp. 1-13, (2017)
  • [3] Veerabuthiran S., Razdan A.K., Jindal M.K., Sharma R.K., Sagar V., Development of 3.0–3.45 μm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane, Opt Laser. Technol., 73, pp. 1-5, (2015)
  • [4] Wagner G.A., Plusquellic D.F., Ground-based, integrated path differential absorption LIDAR measurement of CO<sub>2</sub>, CH<sub>4</sub>, and H<sub>2</sub>O near 1.6 μm, Appl. Opt., 55, pp. 6292-6310, (2016)
  • [5] Refaat T.F., Ismail S., Koch G.J., Rubio M., Mack T.L., Notari A., Collins J.E., Lewis J., De Young R., Choi Y., Abedin M.N., Singh U.N., Backscatter 2-μm lidar validation for atmospheric CO<sub>2</sub> differential absorption lidar applications, IEEE Trans. Geosci. Remote Sens., 49, pp. 572-580, (2011)
  • [6] Cadiou E., Mammez D., Dherbecourt J.-B., Gorju G., Pelon J., Melkonian J.-M., Godard A., Raybaut M., Atmospheric boundary layer CO<sub>2</sub> remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source, Opt. Lett., 42, pp. 4044-4047, (2017)
  • [7] Shibata Y., Nagasawa C., Abo M., Development of 1.6 μm DIAL using an OPG/OPA transmitter for measuring atmospheric CO<sub>2</sub> concentration profiles, Appl. Opt., 56, pp. 1194-1201, (2017)
  • [8] Dumas A., Rothman J., Gibert F., Edouart D., Lasfargues G., Cenac C., Le Mounier F., Pellegrino J., Zanatta J.-P., Bardoux A., Tinto F., Flamant P., Evaluation of a HgCdTe e-APD based detector for 2 μm CO<sub>2</sub> DIAL application, Appl. Opt., 56, pp. 7577-7585, (2017)
  • [9] Refaat T.F., Petros M., Remus R., Singh U.N., MCT APD detection system for atmospheric profiling applications using two-micron lidar, EPJ Web Conf., 237, (2020)
  • [10] Refaat T.F., Petros M., Antill C.W., Singh U.N., Choi Y., Plant J.V., Digangi J.P., Noe A., Airborne testing of 2-μm pulsed IPDA lidar for active remote sensing of atmospheric carbon dioxide, Atmosphere, 12, (2021)