Dynamic Gaussian process regression for spatio-temporal data based on local clustering

被引:0
作者
Wang, Binglin [1 ]
Yan, Liang [1 ]
Rong, Qi [1 ]
Chen, Jiangtao [2 ]
Shen, Pengfei [2 ]
Duan, Xiaojun [1 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Peoples R China
[2] China Aerodynam Res & Dev Ctr, Mianyang 621000, Peoples R China
基金
中国国家自然科学基金;
关键词
Gaussian processes; Surrogate model; Spatio-temporal systems; Shock tube problem; Local modeling strategy; Time-based spatial clustering; ALGORITHM;
D O I
10.1016/j.cja.2024.06.026
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems. This study focuses on extracting local structures and then constructing surrogate models based on Gaussian process assumptions. The proposed Dynamic Gaussian Process Regression (DGPR) consists of a sequence of local surrogate models related to each other. In DGPR, the time-based spatial clustering is carried out to divide the systems into sub-spatio-temporal parts whose interior has similar variation patterns, where the temporal information is used as the prior information for training the spatial-surrogate model. The DGPR is robust and especially suitable for the loosely coupled model structure, also allowing for parallel computation. The numerical results of the test function show the effectiveness of DGPR. Furthermore, the shock tube problem is successfully approximated under different phenomenon complexity. (c) 2024 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
[31]   Hierarchical Spatio-Temporal Modeling of Resting State fMRI Data [J].
Caponera, Alessia ;
Denti, Francesco ;
Rigon, Tommaso ;
Sottosanti, Andrea ;
Gelfand, Alan .
STUDIES IN NEURAL DATA SCIENCE, 2018, 257 :111-130
[32]   A Qualitative Spatio-Temporal Framework Based on Point Algebra [J].
Sioutis, Michael ;
Condotta, Jean-Francois ;
Salhi, Yakoub ;
Mazure, Bertrand .
ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, 2014, 8722 :117-128
[33]   A qualitative spatio-temporal framework based on point algebra [J].
Sioutis, Michael ;
Condotta, Jean-François ;
Salhi, Yakoub ;
Mazure, Bertrand .
1600, Springer Verlag (8722) :117-128
[34]   NONLINEAR PREDICTIVE LATENT PROCESS MODELS FOR INTEGRATING SPATIO-TEMPORAL EXPOSURE DATA FROM MULTIPLE SOURCES [J].
Bliznyuk, Nikolay ;
Paciorek, Christopher J. ;
Schwartz, Joel ;
Coull, Brent .
ANNALS OF APPLIED STATISTICS, 2014, 8 (03) :1538-1560
[35]   RAO-BLACKWELLIZED PARTICLE MCMC FOR PARAMETER ESTIMATION IN SPATIO-TEMPORAL GAUSSIAN PROCESSES [J].
Hostettler, Roland ;
Sarkka, Simo ;
Godsill, Simon J. .
2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,
[36]   RT-DBSCAN: Real-Time Parallel Clustering of Spatio-Temporal Data Using Spark-Streaming [J].
Gong, Yikai ;
Sinnott, Richard O. ;
Rimba, Paul .
COMPUTATIONAL SCIENCE - ICCS 2018, PT I, 2018, 10860 :524-539
[37]   Short-Term 4D Trajectory Prediction for UAV Based on Spatio-Temporal Trajectory Clustering [J].
Zhong, Gang ;
Zhang, Honghai ;
Zhou, Jiangying ;
Zhou, Jinlun ;
Liu, Hao .
IEEE ACCESS, 2022, 10 :93362-93380
[38]   Spatio-Temporal Super-Resolution Land Cover Mapping Based on Fuzzy C-Means Clustering [J].
Yang, Xiaohong ;
Xie, Zhong ;
Ling, Feng ;
Li, Xiaodong ;
Zhang, Yihang ;
Zhong, Ming .
REMOTE SENSING, 2018, 10 (08)
[39]   Data-driven spatio-temporal estimation of soil moisture and temperature based on Lipschitz interpolation [J].
Manzano, J. M. ;
Orihuela, L. ;
Pacheco, E. ;
Pereira, M. .
ISA TRANSACTIONS, 2025, 156 :535-550
[40]   A spatio-temporal fusion method for remote sensing data Using a linear injection model and local neighbourhood information [J].
Sun, Yue ;
Zhang, Hua ;
Shi, Wenzhong .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (08) :2965-2985