Dynamic Gaussian process regression for spatio-temporal data based on local clustering

被引:0
作者
Wang, Binglin [1 ]
Yan, Liang [1 ]
Rong, Qi [1 ]
Chen, Jiangtao [2 ]
Shen, Pengfei [2 ]
Duan, Xiaojun [1 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Peoples R China
[2] China Aerodynam Res & Dev Ctr, Mianyang 621000, Peoples R China
基金
中国国家自然科学基金;
关键词
Gaussian processes; Surrogate model; Spatio-temporal systems; Shock tube problem; Local modeling strategy; Time-based spatial clustering; ALGORITHM;
D O I
10.1016/j.cja.2024.06.026
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems. This study focuses on extracting local structures and then constructing surrogate models based on Gaussian process assumptions. The proposed Dynamic Gaussian Process Regression (DGPR) consists of a sequence of local surrogate models related to each other. In DGPR, the time-based spatial clustering is carried out to divide the systems into sub-spatio-temporal parts whose interior has similar variation patterns, where the temporal information is used as the prior information for training the spatial-surrogate model. The DGPR is robust and especially suitable for the loosely coupled model structure, also allowing for parallel computation. The numerical results of the test function show the effectiveness of DGPR. Furthermore, the shock tube problem is successfully approximated under different phenomenon complexity. (c) 2024 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
[21]   Delay-Embedding Spatio-Temporal Dynamic Mode Decomposition [J].
Nedzhibov, Gyurhan .
MATHEMATICS, 2024, 12 (05)
[22]   Hair-oriented data model for spatio-temporal data representation [J].
Madraky, Abbas ;
Othman, Zulaiha Ali ;
Hamdan, Abdul Razak .
EXPERT SYSTEMS WITH APPLICATIONS, 2016, 59 :119-144
[23]   Identification modeling of ship maneuvering motion based on local Gaussian process regression [J].
Ouyang, Zi-Lu ;
Chen, Gang ;
Zou, Zao-Jian .
OCEAN ENGINEERING, 2023, 267
[24]   LoRa-Based Indoor Positioning in Dynamic Industrial Environments Using Deep Gaussian Process Regression and Temporal-Based Enhancements [J].
Ng, Tarng Jian ;
Kumar, Narendra ;
Othman, Mohamadariff .
IEEE ACCESS, 2024, 12 :165298-165313
[25]   Predicting Road Accidents Based on Current and Historical Spatio-temporal Traffic Flow Data [J].
Jagannathan, Rupa ;
Petrovic, Sanja ;
Powell, Gavin ;
Roberts, Matthew .
COMPUTATIONAL LOGISTICS, ICCL 2013, 2013, 8197 :83-97
[26]   Uncovering migration systems through spatio-temporal tensor co-clustering [J].
Almquist, Zack W. ;
Nguyen, Tri Duc ;
Sorensen, Mikael ;
Fu, Xiao ;
Sidiropoulos, Nicholas D. .
SCIENTIFIC REPORTS, 2024, 14 (01)
[27]   Fast Mode Decision for H.264/AVC Based on Local Spatio-Temporal Coherency [J].
Zhang, Wei ;
Huang, Yan ;
Peng, Jingliang .
2013 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2013,
[28]   ST-Hadoop: a MapReduce framework for spatio-temporal data [J].
Louai Alarabi ;
Mohamed F. Mokbel ;
Mashaal Musleh .
GeoInformatica, 2018, 22 :785-813
[29]   Detecting localized homogeneous anomalies over spatio-temporal data [J].
Telang, Aditya ;
Deepak, P. ;
Joshi, Salil ;
Deshpande, Prasad ;
Rajendran, Ranjana .
DATA MINING AND KNOWLEDGE DISCOVERY, 2014, 28 (5-6) :1480-1502
[30]   ST-Hadoop: a MapReduce framework for spatio-temporal data [J].
Alarabi, Louai ;
Mokbel, Mohamed F. ;
Musleh, Mashaal .
GEOINFORMATICA, 2018, 22 (04) :785-813