Dynamic Gaussian process regression for spatio-temporal data based on local clustering

被引:0
作者
Wang, Binglin [1 ]
Yan, Liang [1 ]
Rong, Qi [1 ]
Chen, Jiangtao [2 ]
Shen, Pengfei [2 ]
Duan, Xiaojun [1 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Peoples R China
[2] China Aerodynam Res & Dev Ctr, Mianyang 621000, Peoples R China
基金
中国国家自然科学基金;
关键词
Gaussian processes; Surrogate model; Spatio-temporal systems; Shock tube problem; Local modeling strategy; Time-based spatial clustering; ALGORITHM;
D O I
10.1016/j.cja.2024.06.026
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper introduces techniques in Gaussian process regression model for spatiotemporal data collected from complex systems. This study focuses on extracting local structures and then constructing surrogate models based on Gaussian process assumptions. The proposed Dynamic Gaussian Process Regression (DGPR) consists of a sequence of local surrogate models related to each other. In DGPR, the time-based spatial clustering is carried out to divide the systems into sub-spatio-temporal parts whose interior has similar variation patterns, where the temporal information is used as the prior information for training the spatial-surrogate model. The DGPR is robust and especially suitable for the loosely coupled model structure, also allowing for parallel computation. The numerical results of the test function show the effectiveness of DGPR. Furthermore, the shock tube problem is successfully approximated under different phenomenon complexity. (c) 2024 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
[1]   Spatio-Temporal Structured Sparse Regression With Hierarchical Gaussian Process Priors [J].
Kuzin, Danil ;
Isupova, Olga ;
Mihaylova, Lyudmila .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (17) :4598-4611
[2]   A Simple Spatio-Temporal Data Fusion Method Based on Linear Regression Coefficient Compensation [J].
Bai, Bingxin ;
Tan, Yumin ;
Donchyts, Gennadii ;
Haag, Arjen ;
Weerts, Albrecht .
REMOTE SENSING, 2020, 12 (23) :1-16
[3]   Learning Biological Dynamics From Spatio-Temporal Data by Gaussian Processes [J].
Han, Lifeng ;
He, Changhan ;
Dinh, Huy ;
Fricks, John ;
Kuang, Yang .
BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (07)
[4]   Learning Biological Dynamics From Spatio-Temporal Data by Gaussian Processes [J].
Lifeng Han ;
Changhan He ;
Huy Dinh ;
John Fricks ;
Yang Kuang .
Bulletin of Mathematical Biology, 2022, 84
[5]   Permutation-test-based clustering method for detection of dynamic patterns in Spatio-temporal datasets [J].
Liu, Qiliang ;
Liu, Wenkai ;
Tang, Jianbo ;
Deng, Min ;
Liu, Yaolin .
COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2019, 75 :204-216
[6]   Clustering Spatio-temporal Trajectories Based on Kernel Density Estimation [J].
Zhang, Pengdong ;
Deng, Min ;
Van de Weghe, Nico .
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 :298-311
[7]   An adaptive method for clustering spatio-temporal events [J].
Li, Zhilin ;
Liu, Qiliang ;
Tang, Jianbo ;
Deng, Min .
TRANSACTIONS IN GIS, 2018, 22 (01) :323-347
[8]   An Improved Clustering Approach for Identifying Significant Locations from Spatio-temporal Data [J].
Angmo, Rigzin ;
Aggarwal, Naveen ;
Mangat, Veenu ;
Lal, Anurag ;
Kaur, Simarpreet .
WIRELESS PERSONAL COMMUNICATIONS, 2021, 121 (01) :985-1009
[9]   Sparse Spatio-temporal Gaussian Processes with General Likelihoods [J].
Hartikainen, Jouni ;
Riihimaki, Jaakko ;
Sarkka, Simo .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 :193-200
[10]   A spatio-temporal binary grid-based clustering model for seismicity analysis [J].
Vijay, Rahul Kumar ;
Nanda, Satyasai Jagannath ;
Sharma, Ashish .
PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (01)