3D statistical shape models for automatic segmentation of the fetal cerebellum in ultrasound images

被引:0
作者
Velasquez-Rodriguez, Gustavo A. R. [1 ]
Fanti-Gutierrez, Zian [2 ]
Torres, Fabian [3 ]
Medina-Banuelos, Veronica [4 ]
Escalante-Ramirez, Boris [5 ]
Marin, Lisbeth Camargo [6 ]
Huerta, Mario Guzman [6 ]
Cosio, Fernando Arambula [7 ]
机构
[1] Univ Nacl Autonoma Mexico, Postgrad Program Elect Engn, Ciudad Univ, Mexico City 04510, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Ciudad Univ, Mexico City 04510, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Fis, Ciudad Univ, Mexico City 04510, Mexico
[4] Univ Autonoma Metropolitana Iztapalapa, Div Ciencias Basicas & Ingn, Mexico City 09340, Mexico
[5] Univ Nacl Autonoma Mexico, Fac Ingn, Ciudad Univ, Mexico City 04510, Mexico
[6] Natl Inst Perinatol, Dept Translat Med, Mexico City 11000, Mexico
[7] Univ Nacl Autonoma Mexico, Unidad Acad IIMAS Yucatan, Inst Invest Matemat Aplicadas & Sistemas IIMAS, Merida 97205, Yucatan, Mexico
关键词
3D segmentation of the cerebellum; Spherical harmonics; Point distribution models; CLASSIFICATION;
D O I
10.1007/s11760-024-03615-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The cerebellum is an important structure to determine fetal development because its volume has a high correlation with gestational age. Manual annotation of the cerebellum in 3D ultrasound images (to measure the cerebellar volume) requires highly trained experts to perform a time-consuming task. To assist in this task, we developed a totally automatic system for the 3D segmentation of the cerebellum in ultrasound images of the fetal brain, using a 3D Point Distribution Model (PDM) obtained from another statistical shape model based on a spherical harmonics (SPHARMs) representation, which provides a very efficient basis for the construction of statistical shape models of 3D organs with a spherical topology. Our PDM of the fetal cerebellum was automatically adjusted with the optimization of an objective function based on gray level voxel profiles, using a genetic algorithm. An automatic initialization and plane selection scheme was also developed, based on the detection of the cerebellum on each plane by a convolutional neural network (YOLO v2). Our results of the 3D segmentation of 18 ultrasound volumes of the fetal brain are: Dice coefficient of 0.83 +/- 0.10 and Hausdorff distance of 3.61 +/- 0.83 mm. The methods reported show potential to successfully assist the experts in the assessment of fetal growth in ultrasound volumes.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Automated 3D ultrasound image segmentation to aid breast cancer image interpretation
    Gu, Peng
    Lee, Won-Mean
    Roubidoux, Marilyn A.
    Yuan, Jie
    Wang, Xueding
    Carson, Paul L.
    ULTRASONICS, 2016, 65 : 51 - 58
  • [32] Automatic Shadow Detection in Urban Very-High-Resolution Images Using Existing 3D Models for Free Training
    Zhou, Kaixuan
    Lindenbergh, Roderik
    Gorte, Ben
    REMOTE SENSING, 2019, 11 (01)
  • [33] Simulation of 3D MRI brain images for quantitative evaluation of image segmentation algorithms
    Wagenknecht, G
    Kaiser, HJ
    Obladen, T
    Sabri, O
    Buell, U
    MEDICAL IMAGING 2000: IMAGE PROCESSING, PTS 1 AND 2, 2000, 3979 : 1074 - 1085
  • [34] 3D brain tumor segmentation in MRI images based on a modified PSO technique
    Gtifa, Wafa
    Hamdaoui, Faycal
    Sakly, Anis
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2019, 29 (04) : 501 - 509
  • [35] Automatic segmentation of ultrasound images using SegNet and local Nakagami distribution fitting model
    Cui, Wenchao
    Meng, Dan
    Lu, Ke
    Wu, Yirong
    Pan, Zhihong
    Li, Xiaolong
    Sun, Shuifa
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 81
  • [36] QUALITY EVALUATION OF 3D CITY BUILDING MODELS WITH AUTOMATIC ERROR DIAGNOSIS
    Michelin, Jean-Christophe
    Tierny, Julien
    Tupin, Florence
    Mallet, Clement
    Paparoditis, Nicolas
    ISPRS2013-SSG, 2013, 40-7-W2 : 161 - 166
  • [37] Fast Automatic Detection of Calcified Coronary Lesions in 3D Cardiac CT Images
    Mittal, Sushi
    Zheng, Yefeng
    Georgescu, Bogdan
    Vega-Higuera, Fernando
    Zhou, Shaohua Kevin
    Meer, Peter
    Comaniciu, Dorin
    MACHINE LEARNING IN MEDICAL IMAGING, 2010, 6357 : 1 - +
  • [38] Automatic deep learning-based pleural effusion segmentation in lung ultrasound images
    Vukovic, Damjan
    Wang, Andrew
    Antico, Maria
    Steffens, Marian
    Ruvinov, Igor
    van Sloun, Ruud J. G.
    Canty, David
    Royse, Alistair
    Royse, Colin
    Haji, Kavi
    Dowling, Jason
    Chetty, Girija
    Fontanarosa, Davide
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [39] Preliminary Development of an Automatic Breast Tumour Segmentation Algorithm from Ultrasound Volumetric Images
    Wieclawek, Wojciech
    Rudzki, Marcin
    Wijata, Agata
    Galinska, Marta
    INFORMATION TECHNOLOGY IN BIOMEDICINE (ITIB 2018), 2019, 762 : 77 - 88
  • [40] Assessment of encoder-decoder-based segmentation models for thyroid ultrasound images
    Yadav, Niranjan
    Dass, Rajeshwar
    Virmani, Jitendra
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (08) : 2159 - 2195